e Asymptotic theory

To assess the behavior of an estimator, we would like to know its exact distribution, but this is
| not always feasible and so we sometimes settle for a convenient approximation. One general

way to obtain an approximate distribution for an estimator is the following asymptotic
\ approach.
yLet Xy,..., X, beasample of size n from a distribution parametrized by a parameter vector
‘flt - - . -
6. Suppose W(Xj,..., X,) is an estimator of a parametric function 7(8). In order to keep
[ track of the sample size we sometimes write W,, = W, (X3,--.,X,). Often it is natural to

'wagard W, as amember of a sequence Wy ,Wa,..., W1 , W, , Wyi1 , Whia,....

Example. Suppose Xj,..., X5 are independent observations from a population with mean
¢ and standard deviation . We mightuse W = X = 3% X;/50 to estimate x. Even
though we actually have a sample size of 50, it is natural to think of X as a member of the
sequence Xy, Xs,..., X4, Xs0,Xs1,Xs2,... where X, = =, Xi/n. The limiting
properties of this sequence somehow seem relevant even though we are really concerned only

with the properties of X59. One important limiting property of this sequence is given by the

entral Limit Thy 1, which says that

Xo—p d
' o/\/% — Normal(0,1) as n — oo,
where the d over the arrow denotes convergence in distribution (see below). This is a limiting

property (or asymptotic property) of the sequence as n — oo, but experience has shown that
for “most” distributions we can say that (X, — p)/(o/+/n) is approximately distributed as

Normal(0, 1) for n as large as 50, which is a statement that we can apply to our actual
sample of data. A

The asymptotic properties that we will be looking at are consistency and asymptotic normality,
which are defined in terms of, respectively, convergence in probability and convergence in

distribution. These concepts were defined in Sections 5.2 and 5.3, but we will review them
briefly here.

Review of convergence in probability

Definition 5.2.1. Let Y;,...,Y,,... be a sequence of random variables. The sequence is said
to converge in probability to a constant c if, forevery € > 0,

P{|Yo—c|<e} — 1 as n— 0.

) P C . .
In symbols, we write ¥;, — ¢. In words, this says that for a large sample size n, there is a
' high probability that Y, will be close to c.
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P
Theorem 5.2.2. (a) If E[(Y; —c¢)?)] — 0 as n — oo, then Y, — c.

P
(b) If E(Y,) — ¢ and Var(Y,) — 0 as n — co, then ¥, — c.
(©) If Ef]¥, — [l — 0 as n — oo, then Y, —> c.
(d) If E[lY, —¢|"] — 0 as n — oo forsome 7 > 0, then Y, Le.
Part (d) is proved in the textbook on p. 244 using the Markov Inequality. Parts (a) and (c) are

the special cases 7 = 2 and 7 = 1. Part (b) follows from (a) because E[(Y, — )] =
Var(Y,) + [E(Ya) — ]

Theorem 5.2.1 (Weak Law of Large Numbers). Let X;,..., X, ,... be Lid. with mean p
and standard deviation o < co. Let X, =Y ., X;/n be the mean of the first n

; = P
observations. Then X, — pu.

This follows from Theorem 5.2.2(b), letting Y,, = X

P
Theorem 5.2.4. If W, —> b and Y, > ¢, then (i) W, + Y, — b+c,

Qi) Wa — Yo 5 b— ¢, (i) W,Y, - be, and (iv) W, /Y, —> bjc provided that ¢ # 0
and P{Y, £0} = 1.

P ) P
Theorem 5.2.5. If Y, — ¢ and g(y) is a continuous function, then g(¥;) — g(c) .

Consistency
Let Xi,...,X,,... be asequence of i.i.d. observations from a population whose distribution
is parameterized by a parameter vector 8. Suppose W1, ..., W, ... is a sequence of

estimators where W,, is calculated from the first n observations, that is, W, =
Wn(-Xlu el | Xﬂ.) -

p
Definition. W, is a consistent sequence of estimators of 7(6) if W, — 7(0) forall 6.

In words, this says that for a large sample size n, there is a high probability that W, will be
close to 7(8) , no matter what @ is. We sometimes simply say that W is consistent for 7(6),

without explicitly mentioning a sequence. “Almost all” reasonable estimators (and even some
unreasonable estimators) are consistent.

Theorems 5.2.1 (WLLN), 5.2.2, 5.2.4, and 5.2.5 provide tools for finding and verifying
consistent estimators. The WLLN implies that X, is consistent for p(8) = Eg(X1).
Theorem 5.2.5 implies:

Lemma. If W, is consistent for 7(6) and g(w) is a continuous function, then g(Wy) is
consistent for g(7(8)) .
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Example. Suppose X;,..., X, areiid. froma Normal(y, 2) distribution.

(2) X, is consistent for x (by the WLLN).

(b) X’i is consistent for y? (by the lemma above).

() eXn is consistent for e (by the lemma above).

(d) S2 is consistent for o2 (by Theorem 5.2.2(b), because E(S2) = 02 — 42 and
Var(S2) = 20*/(n —1) — 0).

(e) S, is consistent for ¢ (by the lemma above because g(w) = \/E i$ a continuous
function).

() Xn/Sy is consistent for p/c (by Theorem 5.2.4). A\

For a parameter vector 8 = (0;,...,0,), we say that an estimator 6, = (O1n, ... ,@m) is
consistent for @ if every component Ejn is consistent for 6;, for j=1,..., .

Lemma. If 8, is consistent for @ and 7(6) is a continuous function, then 7(8,) is
consistent for 7(6) .

The WLLN can be used to prove:

Theorem. Let X,..., X, beiid. with pmf or pdf f(z;8). Assume suitable regularity
conditions on f(x ;@) . There is a solution @, to the likelihood equations (see p. 47 above)
that is a consistent estimator of 8.

This is a generalized version of statement (12.2.3) in Chapter 12 on Large-Sample Inference.
The regularity conditions required for this theorem are Al, A2, A3 on p. 540 in the textbook.
Al is essentially RC1 and RC2 on p. 21 above. A2 is weaker than RC3 but is similar. The
conditions are satisfied by all regular exponential families. For a regular exponential family it
is known that there is only one solution to the likelihood equations and it is the MLE.

Corollary. Under the assumptions of the preceding theorem, with the additional assumption

that the likelihood equations have a unique solution &, , this solution is a consistent estimator
of 6.

Example. Suppose Xi,..., X, arei.i.d. from a Normal(y, 02) distribution. The unique
solutions to the likelihood equations are 7t = X and & — V2 (X; — X)2/n. The corollary
tells us that 7 is consistent for ¢ and @ is consistent for o . In the preceding-exam ;
saw that S is consistent for o. This makes sense because S — \/m o and
Vr/in -1 S T1. 4

-i*]_;(ample. Suppose X 1, .-+, Xn areii.d. from a Gamma(a, 8) distribution. The solutions to
the likelihood equations, which are the MLEs, are not available in the form of an explicit
formula. The MLE of « is given implicitly as the solution of the equation
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log(@) — {10 T"@) = log X — L 10g X;

and then the MLE of 3 can be obtained as ﬁ = X/@a. The corollary above tells us that &
and B are consistent estimators of « and f respectively. A

Review of convergence in distribution

Definition 5.3.1. Let Y;,... .Y, ... bea sequence of random variables. The sequence is said
to converge in distribution to a random variable Y if, for all « 2

P{Y,<u} = P{Y <u} asn— oo.

(s

This is the definition when Y has a continuous distribution, but when its distribution is not
continuous then convergence is required only for all u at which the cdf P{Y < u} is

continuous.

. d ;
In symbols, we write ¥, — Y. In words, we say that for a large sample size n , the
distribution of Y;, is approximately the same as the distribution of Y.

i Y

Theorem 5.3.4 (Central Limit Theorem). Let X 1y--+yXn,... beiid. withmean p and

standard deviation o < co. Let X, = 37 X;/n be the mean of the first n observations.
Xp—p d

Then m —> Normal(0, 1).

Less precisel ight write, for | le si Xo—pt X ormal(0, 1

ss precisely, we might write, for large sample size n, m ormal(0,1) or

approx

2
a Normal(p,?).

% T

Theorem 5.3.3 (Slutsky's Theorem). If W, —c-]—> W and Y, L c, then
d
O WoatY, = W+ec, Gi) W,-Y, —d—> W — ¢, (iii) W,.Y, £> We, and
. d
(v) Wy /Y, — W /c provided that ¢ # 0 and P{Y, #0} =1,

d
Theorem 5.3.7. If Y, % Y and g(y) is a continuous function, then ¢(Y;,) — g(Y).

%smptotic normality

Let Xy Xiges. b sequence of i.i.d. observations from a population whose distribution is
parameterized by a parameter vector 6. Suppose Wi, ..., Wh, ... is a sequence of estimators
where W,, is calculated from the first n observations, that is, W,, = Wl X5 s s Ko ) «
Definition. W, is a consistent asymptotically normal (CAN) sequence of estimators of 7(6)

Wy~ d
if W/T(e% — Normal(0, 1) forall 8 for some o (8).

2
We might write, for large sample size n, W, PR Normal(7(8), a_r(f)l ). Wecall 0%(8)/n

the asymptotic variance of W,, .
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The Central Limit Theorem (CLT) implies that X,, is a CAN estimator of u(8) = Eg(X;)
with asymptotic variance %(@)/n where o2(8) = Varg(X).

The CLT can be used to prove the following theorem.
Theorem. Let X,..., X, bei.id. with pmf or pdf f(z;6), 6 real-valued. Let 0, bea

solution of the likelihood equation that is consistent for 6 (as in the theorem on p. 66 above).

Let 7(6) be a differentiable function of #. Under certain regularity conditions on f(z;6),
— 2
7(6,) is a CAN estimator of 7(#) with asymptotic variance [;—91—(9)] / [nIXl(f))] where

Zx,(6) is the Fisher information in Xj.

This theorem generalizes statement (12.2.4) in the textbook. Note that the asymptotic variance

is the same as the CRLB (see p. 58 above). A/m(‘)_gc_mal version of the theorem is true for a
—
vector-valued parameter...

Theorem. Let Xi,..., X, beiid. with pmforpdf f(z;8). Let 8,, be a solution of the
likelihood equations that is consistent for € (as in the theorem on p. 66 above). Let 7(8) be a
differentiable function of @. Under certain regularity conditions on f(z;8), 7(8,) is a CAN
estimator of 'r((?) with asymptotic v —

% [0:6)) 7 (0] ,J

where Zyx, (9) 1S the F1sher information matrix for a single observation X; and D,(0) =
5‘

Corollary. Under the assumptions of the preceding theorem, for j = 1,..., p, the j-th
component 8, is a CAN estimator of 0; with asymptotic variance 132 (8)/n where Igg (6)

denotes the (7, j) entry of the inverse of the information matrix for a single observation.

The CRLB is given on p. 58 for models with a real-valued parameter, but the formula can be
extended to models with a vector-valued parameter. The formula for the CRLB coincides with
the asymptotic variance displayed above. Theorem 7.5.1 (and its generalization to models
with vector-valued parameters) are concerned with the exact variances of unbiased estimators
and do not apply to the asymptotic variances of CAN estimators. Nevertheless, it turns out
that the CRLB is the smallest possible asymptotic variance, ignoring certain artificially
constructed exceptions.

Definition. W, is an asymptotically efficient sequence of estimators of 7(8) if (i) W, isa
CAN estimator of 7(@) and (ii) its asymptotic variance equals the CRLB.

Thus, the preceding theorem can be restated to say that, under the assumptions of the theorem,
7(8,) is an asymptotically efficient estimator of 7(0)
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Example. Suppose Xi,...,X,, arei.id. from a Normal(u, 0?) distribution. From p- 27 we
know that the information matrix is

1

= 0
IX; (,LL, 02) = i 1
0 557

The inverse of the information matrix is

2
-1 n _ |o 0

AC R A
(a) By the first corollary above, the MLE 7z = X has the asymptotic distribution
Normal(y1, o /n). This is actually the exact distribution of i .
(b) By the same corollary, the MLE 6% = }"(X; — X)?/n has the asymptotic distribution
Normal(o?,20*/n). As in part (a), we do not really need the asymptotic distribution of &2
because we know its exact distribution, but this gives us the opportunity to compare the two
distributions. On p. 52 above we found that E(5?) = ir_-l-laz =(1- %)02 and

| .
Var(6?) = 2—(-1:12—)04 = %(1 - %)04. For large n, we see that the asymptotic mean and

variance are approximately equal to the exact mean and variance. The exact distribution of &2
can be obtained because %EFZ = n—a_§l,5'2 ~ x*(n — 1). By the reproductive property of Chi-
squared distributions, the x?(n — 1) distribution is the same as that of Z;:ll}’} where the Y;’s

2 —_— —_
are i.i.d. x*(1). So & has the same distribution as %E;:IIYI- = UgnTl n*iTZ?:fY;
= 02(1 — %)}_’n_l . As n — 00, the distribution of the sample mean Y ,_; becomes

approximately Normal(1, %), by the CLT. And 1 — % — 1. So the distribution of

a?(1 — %)?n_l becomes approximately Normal(o?, 22—4 ), which verifies the theorem in this
€.

(c) The MLE of y1/0 is fi/3 . Its exact distribution is not easy to deal with, but we can

approximate it by its asymptotic distribution when n is large. Here we have § = (01,6,) =

(#,0°) and 7(6) = 7(64,62) = 7(u, 0?) = p/o, thatis, 7(6;,0,) = 6,/1/6, . The partial

derivatives of 7(0) are % =1/y/0, =1/0, g—gg = —01/(2021/02) = — /(203 . The

asymptotic distribution of /G is Normal with mean p/o and variance

1f1 -u1f[e®* 0 = 1 e
Ll - ol =Lasrdy a
ﬂ[a 203][0 24] n( 202

I 55

Example. Suppose X,..., X, arei.i.d. froma Gamma(a, 3) distribution. The MLEs of
the parameters, which are the unique solutions to the likelihood equations, are not available in
the form of an explicit formula, and so we have no hope of obtaining their exact distribution.
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But we can obtain their asymptotic distribution. For this we need the information matrix.
From p. 48 above we have

B%logf(Xl s, f) = — YP(a) —log B+ log X;
sploef(Xiiaf) = — & 4 i
where ¥(a) = %logI‘(a) is the digamma function. Now

2

Zrlog f(Xi50,0) = —(a)
2

slog f(Xi;0,8) = & - Hx
2 _ _ 1

W ng(XI :aaﬁ) = B

The function ¢/(a) is called the trigamma function. The values of the gamma, digamma, and
trigamma functions have been tabulated in the Handbook of Mathematical Functions edited by
Abramowitz & Stegun. Since E(X;) = af, we get

V() %
IXI(CEHB) = 1 g
B B

and
Ifl — 1 (64 - /6
X, (a, B) ay/(a)—1 [ -y ﬁQ,’!)J(a) N
The asymptotic distribution of & is Normal with mean « and variance naf (o) (a) — 1).
The asymptotic distribution of 3 is Normal with mean f and variance

LB (@)/(et/(0) - 1). A
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Two-sample problems

S

Suppose X is a data vector with joint density f(z;8), 6 € ©,and Y is a data vector with
joint density g(y;4), ¢ € W, Suppose X and Y are independent, and 8 and P are
unrelated. The joint density for the combined data set (X, Y) is

(J(@y:0.9) = f(=; 0)a(u:v), O coxy. )

e

Consider statements of the form:

*) If the statistic T' = T°(X) has property P in the model for X,
and the statistic U = U (Y") has property P in the model for Y,
then (T",U) has property P in the model for (X, ¥).

Theorem. Statement (*) is true for the following properties: (i) sufficiency, (ii) minimal
sufficiency, (iii) completeness, provided that each of the models for X and for Y has
common support, and (iv) ancillarity.

Theorem. If each of the models for X and for Y is an exponential (resp., regular
exponential) family, then so is the model for (X,Y).

Theorem. I(X‘Y)(G,’l,b) = [IXO(H) IY(()'I,b)J i

Theorem. If 6 = 8(X) is an MLE of 6 in the model for X, and P =(Y) is an MLE of
% in the model for Y, then (8, %) is an MLE of (6,%) in the model for (X, Y).

Theorem. Suppose each of the models for X and for Y has a complete sufficient statistic.
If W =W(X) is the UMVUE of 71(€) in the model for X, and V = V(Y) is the
UMVUE of 73(%) in the model for Y, then in the model for (X,Y):

(@) W+ V is the UMVUE of 7,(6) + 7(a}).

() W —V is the UMVUE of 7,(6) — T2(ep) .

(¢) WV is the UMVUE of 7, (6)72(2).

Example. Suppose that X7, ... » Xy are i.i.d. Bernoulli(f;) and Y3, ves 5 Yo Are i1.d.
Bemnoulli(6,), and that the two samples are independent. In the model for the first sample we
know > X; is a complete sufficient statistic and ¥ is the UMVUE of 6;. In the model for
the second sample we know 2_Y; is a complete sufficient statistic and ¥ is the UMVUE of
0. In the model for the combined data, the preceding theorem implies that X — ¥ is the
UMVUE of 6, — 6,. Since X is the MLE of 61 in the model for the first sample and Y is
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« 73 =

the MLE of 6, in the model for the second sample, then X — Y is an MLE of 6, — 0, in the
model for the combined data. A

Example. Suppose that X1, ..., X, are i.id. Normal(y;,0?) and Yi,...,Y,, are iid.
Normal(ps, 02), and that the two samples are independent. We know that the model for each
of the two samples has a complete sufficient statistic, namely (X, %) and (¥, S2)
respectively.

(a) In the model for the combined data, the theorems above imply that X — ¥ is the UMVUE
and MLE of p; —

o1 n—1 20%
(b) Using the fact that S ~ - 1)= Gamma(—QH, T

(23.26), we find that E( g2 ) = - where 6, = (2%51) /[ 2Ar(252)]. Hence 2%

) and using formula

g1 SX
is the UMVUE of ﬂ in the model for the X;’s. Similarly, b—g}-z is the UMVUE of ,u_z in
the model for the Y;’s. In the combined model, the UMVUE of ‘ul _ £z e buX b’"?.
2 Jg SX SY
B . X Y oy o o . 2
The MLE of ol "oy S 5y — 5, Where Gy = \/HE(XI —X) and

= 1 S5
oy = |/ X - V)2
(c) In the model for the X;’s, a,Sx is the UMVUE of o1, where a, =
L I‘(n 1)/I‘( ) In the model for the ¥i's, %’l is the UMVUE of L. Therefore,
Y gz

in the combined model, the UMVUE of 5 is apb, ﬁ The MLE of %

(n—=1)m §
=\ nm- 5 &

Two independent normal samples with related parameters

Uy

A. Common variance. Suppose that X7, ..., X, arei.id. Normal(yuy,0?) and Y3, ..., Y
are i.i.d. Normal(yty, 6?), and that the two samples are independent. Note that the two
populations have the same variance al.

1(1 ﬂl)m

@ S yismpno®) = [ 7y e w0 e
pa
n+m -
:( 2m2) e"p{ 5oz (e u1)2+§1(yj—u2)2]}.
1

~ 503 (Yj—p2)?

1=1
n+m 1
() ol bt )

exp{ ~ 57 (ot + Xu2] + B 5o + B3y}

Letting @ = (uy, yg, 02) , the density has the form



S

f(®,y:;6) = a(0)exp{b1(6) Ry (=, y) + b2(6) Ra(w, y) + b3(8) Rs(z, y)}

where
b6 = 75, Rie,y) = Yo+ Yy
b,(8) = %, Ry(z,y) = )
b3(8) = L3, Ry(z,y) = u;.

In the notation used on p. 20 above, k = p = 3. The other two conditions for a regular
exponential family are also satisfied. From Theorem 6.6.2 we conclude that T =
X2+ EYZ >-Xi,2_Y;) is acomplete sufficient statistic. Since (X, Y, S?Z) where

B2 [Z(X X)) +3(Y;-Y) ] is a one-to-one function of 7", it also

P n+m 2
complete and sufficient..

Thus we find that

X is the UMVUE of y; .

Y is the UMVUE of p,.

X —Y is the UMVUE of y; —

Sp2 is the UMVUE of o2,

X = Y is the UMVUE of ’i}‘ﬂ where
P

- F(n+r2n—2)/[\/mr2mr(n+?—3 )]

(1) To find MLEs, we calculate

9 -
G o f (=, y5m,m2,0%) = T5(2— )

Fol o
mlogf(x)y;#1:#2102) = ?:-I%(y_uz)

%log f@y;m,p2,0%) = — n;;? T 20,4 [Z(Ei — )+ (i~ #2)2]
and obtain
=X, = (n:fmz)Sg. A
B. Common mean. Suppose that X, .-+, Xy are iid. Normal(gu, crf) and Yi,...,Y,, are

i.i.d. Normal(g, 02), and that the two samples are independent. Note that the two populations
have the same mean .
—%—ff(iﬂf—u) 1 ~ 5z (—n)?*

() flz,y;p,0%,02) = H 1 ﬁ e

i=1 2'.rra1 j=14/2mo}

]
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(1)

m
1 { - 207 2= 17— 57 St - w1
\\/ 2ng? \/ 2r02 P 2t T H By T
n

m

1 RE L mp
N \/ 27raf \/ 27ro§ CXP{ 20 12 203
A9 B 1 ena B
xp{ ~ 32 X + B¥m— 5y + By}
Letting 6 = (i, 01, c?), the density has the form
J(2,y:0) = a(0)exp{b1(8)Ri(z, y) + ba(0) Ra(=, y)
+03(60) Ba(=, ) + 1gl6) By, )

where
b(6) = 57, Ri(a,y) = 2o}
b,(8) = U%, Ry(z,y) = Yz
—1
b3(0) = 207 Ry(z,y) = 3 y?
by(0) = -;ig, Ry(z,y) = ;.

In the notation used on p. 20 above, p = 3 # 4 = k. This is an exponential family but it is
not regular. It can be shown, using Theorem 6.3.1, that R = (3.X? Y X;, > D) dsa
minimal sufficient statistic. It is not complete because E( %ZXI- - %ZYJ) =pu—p=0.

(i1) To find MLEs, we calculate

) _ N
a—#logf(m,y;#,af,aﬁ) = *;—%(I == Ji) + gnz%(y* 1)

_90 . g o T . S
8(0'%) logf(m,y,,u,al,%) SR 20.% G by 20.%2(1‘2 ,'_L)

%) st a2 a2y o— o 1 2
a(o.g)logf(xayulu':gl,ob) - 20.% < 201212(11} Ju') »

The likelihood equations can be manipulated to obtain
n — m —
P e 3

(1) = -tr—vt

2T 52

a 0'2
153 1 s
@ 7 = 73 (- @)’

3 &= %E('yj ~fi)*.
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These can be solved iteratively. Start with, say, an initial estimate o=

(2 zi + )_y;)/(n + m), the average of both samples combined. Plug this into (2) and (3) to
obtain initial estimates 3% and 3% . Now plug these into (1) to obtain an improved estimate
fi. Next plug this into (2) and (3) to obtain improved estimates &7 and 2. Continue this
procedure until the estimates converge.

To estimate the SEs of these estimators, we can use the square roots of their asymptotic

variances. For this we need the information matrix.
2

0 n m
szlog f(zyipmof,03) = — =Rl

6—210gf(2: T 02) _ _n_ _1‘"2(5'5‘ )2
6(0%)2 Y YK, 07,045 2011 0113 i M

2

o m 1
Wlogf(ﬂ?,y;u,Of,ffg) = 208 ;262(%'_“)2'
et flz,yim,07,03) = — Lo(z—p)

6#6()’%) g YU, 1:%2 o-f P

> . 2 92y . mo.

aﬂ%%)log f(x,y“U‘,O']_,O'z) - o-g (y o ,U)

9 . 2 2\ _
B(Jf)a(ag)Ing(x’y’#’ o1, 03) =

Thus we obtain

= m ”
o2 + o2 0 0
n
IX,Y(,”’) quag) == 0 T"ii 0
m
0 0 204 j

The second theorem on p. 68, which is for i.i.d. samples, generalizes to the two-sample

situation. It is easy to invert this diagonal matrix:

W—i% 0 0
o? " af
I)_(}Y(.u‘u U%,Ug) = 0 Q_Ji 0
n
. 20
i m |

For large n and m, the solution fi to the likelihood equations has approximately a normal

distribution with mean u and variance 1/(-2% + Y Let us compare this with what we
e o% ;25 P

could achieve if we knew the values of o7 and 3. It can be shown that we would then have
a 1-parameter regular exponential family and that an MLE (and UMVUE) for p would be



e

3

5T+ Yy
fe = _‘lnﬁn%—
ot o3

n
a

q

The variance of fi, is 1/ ( % = g—) So the asymptotic variance of the likelihood-equation
1 2

solution fi when ¢? and o3 are unknown is approximately the same as the UMVUE of 4
when of and o3 are known. This provides support for the claim that that likelihood-equation
estimators are often efficient, at least for large sample sizes.



% Script air.m

% Data from Cox & Snell (1981) Example T.

% Intervals in service-hours between failures

; of the air-conditioning equipment in a Boeing 720 jet aircraft.
% Adlrcraft # 2.

% From Proschan (1963) Technometrics, 375-383.

yl = [ 90 10 60 186 61 49 14 24 56 20 ]
y2 = [ 79 84 44 59 29 118 25 156 310 76 ] :
y3 = [ 26 44 23 62 130 208 70 101 208 1 :

y = [yl 92 §3] 3

n = length(y)

hist(y)

mle = gamfit (y) ;

ahat = mle (1)

d = ahat*trigamma (ahat)-1 ;

varahat = (1/n)*ahat/d ;

seahat = sgrt(varahat)

bhat = mle(2)

varbhat = (l/n)*bhat”2*trigamma(ahat)/d C

sebhat = sqrt(varbhat)

funetion p = trigamma (x)
% Approximation to the trigamma function

cl = 0.075757515757576
€2 = -0.033333333333333 ;

€3 = 0.0238095238095238 ;
cd = 0.166666666666667 5
X=X+6;

p=1/(x.*x);
p=(((((c1*p+c2).*p+c3).*p+c2).*p+c4).*p+l)./x+0.5*p;
for i = 0:5 ;

Xx=x-1;

p=1/(x.*x)+p;
end
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~ Notes on Test of Hypotheses Lorthooe (fj Mk hopd L‘wj

(see Ch. 8 in Mukhopadhyay)

Formulation of a probability model

Let = be a vector of observed data. Sometimes it is appropriate to formulate a probability
model for the data. To be mathematically precise, a probability model is regarded as a family
of possible probability distributions that could have generated the data. That is, we suppose x
is the observed result of a random experiment that produces a random data vector X
according to a probability distribution with pmf or pdf f(z ;8) for some parameter (or

parameter vector) € in a specified parameter space © .

Notation. Upper case X represents the outcome before it is observed and lower case z
represents the outcome after it is observed. Lower case z is also used as a mathematical
dummy variable, as in f(z;8). To distinguish the two uses of lower case =, we sometimes

write xos for a vector of observed data.

We assume that one of the parameter vectors in © is the true parameter vector indexing the
true probability distribution that governed the generation of . But we do not know which is

e ) the true @ ; we know only that it is in © . Using the observed data -, our goal is to make an
inference about the true 6.

Example 1. A polling organization selects a simple random sample of 100 voters in
Corvallis and asks them whether they are in favor of a school tax bond. The data can be
expressed as & = (x1, Ty, ...,Z100) Where z; = 1 if the i-th voter is in favor and z; = 0 if
not. A sensible model for these data is that they are the observed outcome of X =
(X1, Xo,..., X100) where the X;’s are i.i.d. Bernoulli(@) for some 0 < § < 1. Then
© = (0,1) and

100 100

f(=36) = [1f(2::0) = [16%(1-0)1 =% = gumi(1—g)100-2a
1=1

1=1

Example 2. A rat is weighed 5 times using a scale whose standard deviation is known to be
3 grams. The data are = = (zy, T, T3, T4, T5) Where z; is the weight obtained from the i-th
weighing. A possible model for these data is that they are the observed outcome of X =
(X1, X2, X3, X4, X5) where the X;’s are i.i.d. Normal(, 9) for some > 0. Then 6 = p,
© = (0,00) and

5 5
r flzip) = izﬂlf(:m;u) = 21721—11_36}(]3[— 11—8(93, — p)?]




o

5
= {3 27r)‘5exp[ - 11—821(1‘: - #)2] . |

Example 3. A polling organization selects a simple random sample of 100 voters in
Corvallis and another simple random sample of 100 voters in Bend and asks them whether
they are in favor of removing dams to aid salmon. The data can be expressed as = =

(it 243 on il 100 B0y 02y oo 4 T 9100 Where x ;= 1 if the i-th voter in Corvallis is in
favor and zy; = 0 if not and where z9; = 1 if the ¢-th voter in Bend is in favor and z9; = 0
if not. A sensible model for these data is that they are the observed outcome of X =

(X11, X125, X100, X21, X 22,..., X 2,100 wherethe X s areii.d. Bernoulli(§ ;) for
some 0 < 6; < 1,the Xy;’s areii.d. Bernoulli(6s) for some 0 < 63 < 1, and the Xy;’s are
independent of the X5;’s. Then 8 = (64,6;), © = (0,1) x (0,1), and

f(m : 9) — 9?311(1 _ 91)100*2.‘1711' 9?32:(1 _ 92)100—2_’,{:25 . ”

Example 4. A polling organization selects a simple random sample of 100 voters in
Corvallis and asks them whether they are in favor of removing dams to aid salmon and
whether they are in favor of a school tax bond. The data can be expressed as = =
(z11, 12, T21, T2, - - -, T100,1; Z100,2) Where z ;3= 1 if the i-th voter is in favor of removing
dams and z;; = 0 if not and where z;5 = 1 if the i-th voter is in favor of the bond and
z; = 0 if not. A sensible model for these data is that they are the observed outcome of X =
(X1, X12,Xo1,X92,...,X1001, X 1002 where the pairs (X ;;, X ;o) are i.i.d. with pmf
defined by f(1,1) = 613, f(1,0) =619, f(0,1) = 8¢y, and f(0,0) = g for parameters
satisfying 0 < 6,5 < 1 and 61 + 019+ o1 + 0gp = 1. Then 8 = (611,610,001,000), © =
{6 €(0,1) x (0,1) x (0,1) x (0,1) : 11 + 010+ Go1 + B0 =1}, and

f(z;60) = ﬁf(xﬂ, Tin;0) = ﬁ)efflmgﬁ)ﬂ(1_$i2)9€1—$ﬂ )551‘29&)—151‘1 st

=1
_ Y11 g¥10 g¥o1 gl
= 61010 00y Ooo”
where y, = #{i: (za,z2) = (r,8) }. |

Example 5. 100 rats are taken from a colony of rats and a simple random sample of 50 of
them are selected to be fed a high-sodium diet. The remaining 50 rats are fed a low-sodium
diet. After six months their blood pressures are measured. The data can be expressed as = =
(z11,Z12,..-, %150, %21, T22,...,T250) Where z1; is the blood pressure of the i-th rat on the
high-sodium diet and x,; is the blood pressure of the i-th rat on the low-sodium diet. A
possible model for these data is that they are the observed outcome of X =

(X11,X12,..., X150, X21,X22,..., X250 where the X /s are i.i.d. Normal(p1,0?), the



B

PN Xoi’s are i.i.d. Normal(u, 02) , and the Xy;’s are independent of the X»;’s. Then 6 =
(1, 0%, 12, 03), © = (0,00) x (0,00) x (0,00) x (0,00), and

50 50
f(fE 3 9) = Hf(Eli 3 ﬂlaa%) l;llf(ﬂizi;#z, G%)

=H

1 2 1 2
exp| — _(3511' - #1) - EXp| — T — g
QWU% [ 20% ] i=14/27m02 [ 203( i~ h2) ]

= (27r0102)_ exp % 22(3311 #1 = 5 22 372: #2) i

Formulation of atestef a hypothesis

In order to perform a statistical test of a hypothesis, the hypothesis should be expressed in
terms of the parameters of the probability model. The general form of a hypothesis is

Hp : @ € B where Oy is a subset of the parameter space 6. Using the data vector =, we
want to decide whether or not the true parameter vector € isin ©y. That is, we want to test
the null hypothesis Hy : @ € ©¢ versus the alternative hypothesis Hy : 8 ¢ ©y. The null

hypothesis is given preferred status in the sense that it is accepted as a plausible statement

i s
oy unless The data show strong evidence against it. Sometimes the alternative hypothesis is
written as H; : 6 € O, where ©; = @\90:{96@ 0 ¢ Oy}.

Sometimes we want to focus on a certain subset of the null parameter vectors or of the
alternative parameter vectors. To do this we test Hy : @ € ©¢ versus Hy : @ € ©; where O
and O; are disjoint (that is, ©9 N ©; = ) but their union does not contain all the parameter

vectors in ©. Such a focus reduces the parameter space from © to 6T = QU O, .

Example 1 (cont'd). Suppose we want to test whether or not the percentage of voters in favor
of the school tax bond is greater than 50% . Recall that the parameter space is © = (0, 1).
We might set ©g = (0.5, 1), which corresponds to Hgp : § > 0.5. Then H; : § < 0.5 and

O; = (0,0.5] . However, as will be seen later, we want the null hypothesis to be as specific as
possible, and hence we want Hy to contain the equality sign rather than H; . So we should let

the hypotheses be Hy : 8 < 0.5 versus H; : § > 0.5. Then Qg = (0,0.5] and O, =
(0.5,1).

It is also sensible to formulate the hypotheses as Hg : 8 = 0.5 versus H; : 8 > 0.5. Then we
would be reducing the parameter space to ©F = [0.5,1).

In developing the theory of testing, it is convenient to also consider simplified hypotheses such
ﬂ as Ho: 6 = 0.5 versus Hj : 8 = 0.6. This reduces the parameter space to @1 = {0.5,0.6} .
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One approach to testing the value of a parameter

Suppose that we have been given an observed data vector x and that we have formulated a
probability model f(z;6), 8 € ©, for the data. Suppose we want to test a simple null
hypothesis Ho : @ = 8y. A null hypothesis is called simple if Oy contains only one member.
A sensible approach to testing a simple null hypothesis is to first estimate the true parameter
by some reasonable estimator 6 and then agecpt Hy if 8 is “close” to 6y and ageept

H; : 6 # 0 if @ is “far” from 6. L4, rej Ho

Example 2 (cont'd). We assume that X7, Xo, X3, X4, X5 are i.i.d. Normal(y, 9) for some 1.
Let us test Hp : 0 = 200. First let us choose an estimator for ;. A good choice is the sample
mean X . This is a very reasonable choice because it is the method-of-moments estimator
(Example 7.2.2), the maximum likelihood estimator. (Example 7.2.6), and the uniformly

minimum variance unbiased estimator (Example 7.5.3).

We will accept Hp : = 200 if X is “close” to 200. We could specify “closeness™ in terms
of |X — 200|. Thus, we accept Hy : p = 200 if | X —200] < b (for some b > 0, the choice
of which is discussed below), and we accept Hj : g # 200 if [ X — 200] > b. ‘Ho,ﬁé\]

The value of b determines the probabilities of two types of errors. Type I error occurs if_Hy

ﬂ 7 s accepted-when Hy is true. Type II error occurs if He-is-aeeepted when H; is true.
ef Ho. €4.0. Ho
P{Type I error} = P{accept Hr| Hy is true}
= P{|X —200| > b| =200} .
Since Xi, X, X3, X4, X5 are i.i.d. Normal(g, 9), then X ~ Normal(u, 1.8) , by Theorem
4.4.2. If pp =200, then X ~ Normal(200,1.8), 50 X — 200 ~ Normal(0, 1.8) and
(X —200)/+/1.8 ~ Normal(0, 1) . Therefore

P{Type I error} = P{|X —200|//1.8 > b//1.8 | =200}
= P{|Z| > b/+/1.8} where Z ~ Normal(0, 1)
=P{Z< -b/\/18 or Z>b/\/18}
= ®(—-b/V1.8)+1-3(b//18)
= 28(—b//18) . eoonse @(m"v OB

If we choose b very large, then P{Type I error} will be close to OA. However, we are also
concerned about Type II error. ‘( X

‘ P{Type Il error} = P{ascept Ho | H; is true}



-5-

= P{|X —200] <b| pu#200} .

This should be interpreted as a collection of probabilities, because there is a different
probability for each different value of u # 200.

P{[X—200] <b} = P,{200-b<X <200+b} .
As above, X ~ Normal(,1.8) and so (X — p)//1.8 ~ Normal(0, 1) . Now
P,{200—-b<X <200+b}

= Pu{ (200 — b — 1)/ /1.8 < (X = )/ /1.8 < (200 + b — ) //18}
= Pu{(200 —b— p)/\/1.8 < Z < (200 + b — p)/\/18)}

where Z ~ Normal(0, 1)
= ®((200+b — 1)/ /1.8) — ®((200 — b — ) //1.8) .

If b is very large, then P{Type Il error} will be close to 1 (because $(co) — ¢ -o0) =
1 —0=1). The probability of Type II error can be made small by choosing b close to 0,

(because ©((200 — 11)/+/1.8) — ®((200 — p)/+/1.8) = 0), but unfortunately, for b close
to 0, P{Type I error} will be close to 1. We must choose b to balance our concerns about

Type I and Type II error.

A common convention is to choose b so that P{Type I error} = .05. In this example this

requires 2@(-b/+/1.8) = .05, hence ®(-b/1/1.8) = .025, hence —b/+/1.8 =
®-1(.025) = —1.96 or b = 1.961/1.8 = 2.63.

Thus we have derived the following test procedure.
Calculate X . _
£AL
If | X —200| < 2.63, acéept Hg : ;2 = 200.
- iy Mo
If [ X —200| > 2.63, aveept-H; : p # 200.

This test procedure has the following properties.

P{Type I error} = .05 .

P{Type Il error} = $((202.63 — ) /+/1.8) — &((197.37 — p)/\/1.8) for ;1 # 200.

Let B(u) = P,{Type Il error} . The probabilities of Type I error for some selected values of
i are shown below.
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7 B(1r) 7 B(1e)
200.1 | .9494 199.9 | 9494
200.2 | .9475 199.8 | .9475

201 | .8844 199 | .8844

202 | .6804 198 | .6804

205 | .0387 195 | .0387

210 | .00000002 190 | .00000002

Instead of looking at the probability of making a Type II error, we can take a more positive

viewpoint and consider the probability of not making a Type II error, which is called the
power.

power = P{no Type II error}
=y f o
= P{accept H; | Hj is true} .
In our example,
power = P{[X —200] > b| u# 200} .
This is actually a collection of probabilities, one for each u # 200 .

Let Q(p) = 1 — () = power. (Caution: Some books let 3(1) denote the power.) The
power function Q(x) can be defined for all values of s,
oq . ¥lo
Qlp) = P{arg/é&qaﬂiﬂ # is the true parameter} .

Then for g = 200, 2. 2.
Q(200) = P{accept H, | yo =200} = P{Typel error} ,
and for u # 200,

2y
Q(r) = P{acceft Hi | po (#200)} = 1— P{Type Il error} .

Q)




General concept of a test

.

2

E'{A test of a hypothesis is a procedure for deciding, based on the data, whether to accept the
;hypotlggsis orrejectit. Let X be the sample space of the probability model; that is, X is the
:?a?ail possible values that the random vector X might take. In Example 1 the sample
spaceis X = {0,1} x --- x {0,1} (100 times) = {0, 1}!%. In Example 2 the sample space
is X = (-00,00) X --- % (—00,00) (5 times) = ( - co0,00)®> = R5. (Note that the weight
of a rat is always positive and so it seems that a more suitable sample space might be

X = (0,00)°, but then instead of the Normal distribution we would need to use a distribution
on the positive real numbers such as a truncated Normal distribution or a Gamma distribution.
A truncated Normal distribution is difficult to work with, and it is often the case that the

amount of truncation is very small and not worth bothering with.)

A testing procedure divides the sample space into two parts, R and its complement R¢,
where R = {z € & : H; is accepted if z is observed}. Since H; is accepted if and only if
Hp isrejected, we call R the rejection region of the test. Any subset R in X can be
regarded as the rejection region of a test. (Technically, R should be a “measurable” subset of
A, but we can safely assume that all sets we will encounter will be measurable.) Of course

some of these tests are ridiculous ones that no one would ever seriously consider using.

é‘ he effectiveness of a test in coming to a correct decision can be evaluated by its power

function
2y HY
Q(6) = P{accept H; | @ is the true parameter} = Po{X € R} ,

-

defined for all § € ©. For @ € Og, we have Q(0) = P{Type I error}. And for 8 € O, , we
have Q(6) = 1 — P{Type Il error} = power. Therefore, for 8 € O, we want Q(8) to be
small, and for 8 € ©,, we want () to be large.

£, The size of a test is the maximum probability of Type I error, that is, sup{Q(8): 8 € O¢}. If
the size of atestis < «, we say it has level «.

The usual approach to testing is to first be concerned with Type I error by choosing an
acceptably low value of o and requiring that a test have level «. That is, if the true
parameter vector is in Qg , the probability of a wrong decision can be no more than «.

Next, subject to having level a, we look for a test with high power.

In some special testing situations, we can find a level « test that has the highest power Q(8)
among all level « tests and for all @ € ©;. Such a test is called a best level « testora

- uniformly most powerful (UMP) level « test. The word “uniformly” refers to the property of
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having the highest power “for all @ € ©,”. If the alternative hypothesis is simple, i.e.,
Hj : 6 = 6, then a test having the highest power is called simply a most powerful (MP) test.

Most powerful tests

In order to develop some theory that can help us in finding tests of high power, we first
consider the simple, artificial situation in which the null and alternative hypotheses are both
simple, that is, Hp : @ = 6y versus H; : @ = 6;. Thus we are momentarily supposing that
there are only two possible distributions that the data could have been generated from. Let

f(z;6p) and f(x;61) be the pmf's or pdf's of the two distributions.

A pmfor pdf f(z;6) isa function of z for each fixed value of 6. If we view it as a
function of @ for a fixed value of =, then it is a likelihood function, denoted L(6;z). (This
is slightly different from Mukhopadhyay's notation.) Many statisticians like to regard

L(6 ;) as the likelihood of 6 being the true parameter if the data vector z is observed.
From this viewpoint, the likelihood ratio f(x;61)/f(z;60) = L(8:;x)/L(6y; ) measures
how much more likely 6; is to be the true parameter than 6, is. It turns out that the MP level
a testof Ho : @ = @y versus H; : @ = 6, is one that accepts H; when the likelihood ratio is
larger than some critical value k. That is, the MP test accepts H; when 67 is more than k&
times more likely to be the true parameter than 6y is. The value of k is chosen to obtain the
desired level. Traditionally, scientists take the position that the null hypothesis will be
rejected only if there is strong evidence that it is wrong. For a larger value of k, stronger
evidence against Hy is required to rejéct it, which implies a smaller probability of Type I

error. Thus a larger value of k gives a smaller level.

Theorem. (Neyman-Pearson Lemma — version 1) Suppose f(z ; 6p) > 0 forall . Let
k>0and R* = {z: f(z;01)/f(x;60) > k}. Then R* is the rejection region of an MP
level o testof Ho : @ = @y versus Hj : @ = 6; where o = Pg,{X € R*}.

The requirement that f(z ; 6p) > 0 for all = can be dropped.

Theorem. (Neyman-Pearson Lemma — version 2) Let k& > 0 and suppose R* is a subset of

the sample space such that
; 6 k ; 6 !
f(2:61) > kf(z;60)} = = € lt i Shim, = )
f(@:61) <kf(z;600)} = 2 ¢ R".

Then R* is the rejection region of an MP level « test of Ho: 0 =86y versus Hy : § = 6,
where a = Pg,{X € R*}.
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To obtain a desired level «, one tries to find the appropriate value of k. When the
distribution of X is discrete, however, it may not be possible to find such a & .

Example 1 (cont'd). Suppose X, X, ..., Xjgp are i.i.d. Bernoulli(f) for some 0 < 8 < 1.
Their joint pmfis f(x;6) = 02%i(1 — 6)100-2%i | Letustest Hy: 6 = 8 versus
H; : 8 = 6, . The likelihood ratio is

f@ 300/ f(360) = 07 (1= 0:)! 0725 /6751 — )10
According to the Neyman-Pearson lemma, for every k > 0, the region R* =

{x: 9?35"(1 - 81)100“2"‘3*/98:%(1 — 0p)100=22%i k3 is the rejection region of an MP
level a test where a = Pg {X € R*}.

It would be nice if we could re-express R* in a simpler form. What does the inequality
defining R* say about = ? Note that = is involved in the inequality only through the value

of ) x;. By collecting terms involving }"z;, we can write the inequality as
91/(1—81) 2T ( 1—-8 )100 G
60 /(1—86) 1-06,

(zmmog[%ﬁj—gg] + 10010 g(l g ) > logh .

or

or

N R i)

provided that log [%%—Egi%] > 0, which is true if and only if % > 1, that is, if

and Olﬂy if 6; > 6.

So consider the case ¢; > 6. Then the MP rejection region can be expressed as R* =

{z:32; > c)} where c = [logk 100 1og(1 9‘)] /o [3;5(} ‘3:,)] . Considering all

values of k > 0 is equivalent to considering all values of ¢. Restating what was said above:

forevery c, the region R* = {z : Y z; > c} is the rejection region of an MP level o test
where a = Pg {3"X; > c}.

Note that the description of the MP rejection region R* does not involve the specific value of

60/(1—64)

the MP rejection region for testing Hy : 0 =  versus H; : # = 6, forall #; > 0p. In other

01 . Itonly involves the inequality 8; > 6 (so that log[gl/(—l_gl—l] > (). Therefore R* is
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words, R* is the rejection region of a UMP level « test of Hp : § = 8y versus H; : 6 > 8,
where a = Pg, {D_X; > c}.

To be more specific, let 8 = 0.5 and suppose we want an MP test of level .05 for testing
Hp: 8 = 0.5 versus H; : 8 > 0.5. Such a test should reject the null hypothesis if and only if
S z; > ¢, and ¢ should be chosen so that Pg_g5{>_X; > ¢} =.05. When 6 = 0.5, then
5" X, ~ Binomial(100,0.5). So ¢ should be chosen so that P{Y > ¢} = .05 where

Y ~ Binomial(100,0.5). We may as well suppose ¢ is an integer. Note that

P{Y > ¢} =1 —P{Y < ¢}. Using the Matlab function binocdf(x,100,0.5) for
integers x between 0 and 100, we find that P{Y > 57} = .0666 and P{Y > 58} = .0443.
Due to the discreteness of the binomial distribution, we cannot achieve an MP level .05 test.
(We can achieve it if we allow the use of randomized tests, as in Example 8.3.6, but
randomized tests are unappealing to most statisticians and are not used in practice.) But we

can say that the test that rejects Hy when ) "x; > 58 is an MP level .0443 test for testing
&,Hg :0=0.5 versus Hy : § > 0.5. ||

It is often true, as in the example above, that the likelihood ratio that is used to define an MP

rejection region is a somewhat complicated expression. Since the rejection region is a set of.
vectors « , we want to re-express the condition f(z;6,)/f(x;6) > k in a form that is as_

simple as possible with regard to . Thus we want to collect together, to the extent possible,
all terms involving x .

e ——

Example 2 (cont'd). Suppose Xj, X2, X3, X4, X5 are 1.i.d. Normal(y, 9) for some g > 0.
Their joint pdf is given at the top of p. 2. Letustest Hg : = pp versus Hy : g = puy. The
likelihood ratio is

fl@im) _ ~
f(:c,,uo) (3\/%)_56}{})[—%;(11'_#“})2] CXP[—%:ZI(:E{ —Ho )2]

VEn o[- kY @-mP] e[~k (@]
5

It is not clear what this says about x, and so we try algebraic manipulations in an attempt to
simplify it with regard to =. Manipulations that help in this case are exp(a)/exp(b) =
exp(a —b) and 3% a; + Zf;lbi = Zfil(af +b;) and (z —a)? — (x —b)? =

2(b — a)z + a® — b%. This leads to

flzp) B1—f & 5
f—(;";—#;—) = eX [ 19 i:zlm"ul_g(ﬁ_”%)] :

Now we see that
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ot

5 5
’ . _ 5
—-———;g ’ﬁg >k iff exp[mgm E_l:::i - 18 (12 - ug)] - -

5
T ) 5
iff Eg 2w 15 (1} — uf) > logk
p—p & 5
iff 9 > Ti > logk + ﬁ(y% —ud) .

=1

If ;11 > po,then g — po > 0, and so the inequality is equivalent to

2 9 5
Zlav:i 2 e [logk + 15 (1t — 1d)] = Gay) ¢ .

Therefore, the MP rejection region can be expressed as R* = {z : Y x; > ¢ }. This defines a
MP level o test where o =P, {> X; > c}.

Suppose we want a particular level a. We need to find a suitable value of c¢. Note that
S22 Xi ~ Normal(54,45) ,50 P, {3 X; > c} =

Pl (X — 510)/v/45 > (¢ — 5p0)/ /45 } = P{Z > (c — 5p0)/ /45 } =

1-®((c—- 5u0)/1/45 ). Setting 1 — ®((c — 5;L0)/\/¢E ) = «a, we can solve for

c = 5uy + \/EtI)“l(l — ). Thus, if g1 > po, the following test is a MP level « test of

Hp : o = po versus Hy : o= pp: reject Hy if and only if 3 X; > Suo + \/qul(l —a).
Note that thi_swgoes not involve the specific value of 14 - So the test is a UMP level o test of

SRSl s S

Ho : 1t = o versus Hy : jo> pug—|

Note that an MP test always exists for testing a simple null hypothesis versus a simple
alternative hypothesis (although one may be limited to certain values of o when dealing with
discrete distributions as in Example 1 above, unless one is willing to do a randomized test).
But only in special cases do UMP tests exist. In most of these special cases, the @?ﬂ “
ﬂ{éiéﬁﬂe'parameterahas dimension 1 and thehypethesis is one-sided. Even then, however,
a UMP test may not exist. For example, given a single observation z from a Cauchy
distribution with unknown median 8, i.e., with pdf f(z;6) = 1/{x[l + (z — 6)?]}, there is
no UMP test of Hg : 0 = 8y versus Hy : 8 > 6.

The textbook presents several examples of MP tests. These are summarized below.

Example 8.3.1. Suppose X,..., X, are i.i.d. Normal(y, 03) with unknown mean g and
known variance o3 . We want to test Ho : 2 = j1o versus Hy : = p;. Suppose 1 > fio.
Then the likelihood ratio can be simplified so that the MP level « test can be expressed as:
reject Ho if X > po + (00/+/n)@71(1 — ) . Note that this is a UMP level a test for testing
Ho:p=pg versus Hy : > pg. ||
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Example 8.3.2. Suppose Xj,..., X, areii.d. Normal(y,o2) with unknown mean f and
known variance o . We want to test Hy : p = pg versus Hy : p = p;. Suppose p; < pg.
Then the MP level o test can be expressed as: reject Ho if X < po — (00//n)@" (1 - a).
Note that this is a UMP level « test for testing Hg : pn = puo versus Hy : g < pig. ||

Example 8.3.3. Suppose Xi,..., X, areii.d. Exponential(3) with unknown mean 3. We
want to test Hy : B = 3y versus Hy : 8 = ;. Suppose 81 > . Then the likelihood ratio
can be simplified so that the MP level « test can be expressed as: reject Hg if X > c.
Note that this is a UMP level « test for testing Hy : 8 = By versus H; : 8 > ;.

In order to find ¢, we must know the distribution of > X; when 8 = ;. Since X; ~
Exponential(f) = Gamma(1, /3), it follows from Theorem 4.3.2(ii) that 5" X; ~

Gamma(n, 3) . For any desired level o, we could use the gaminv function in Matlab to
calculate a suitable value of c. Or if a computer function was not available, we could express
the test as: reject Ho if T' = (2/60)>_X; > ¢’. Then T ~ Gamma(n, (2/50)3) , and so
under Hy, T' ~ Gamma(n, 2) = x?(2n). Hence the critical value ¢’ can be obtained from a

chi-squared table. ||

Example 8.3.4. Suppose X, ..., X, arei.i.d. Uniform(0,8) with unknown parameter 6.
We want to test Hy : § = 6y versus H; : @ = 8;. Suppose 6, > 6. In this example the two
pdf's do not have the same support, and so we should use version 2 of the Neyman-Pearson
Lemma. Using the N-P Lemma in this example turns out to be tricky. First let us guess what
a good test might be. A sufficient statistic for the sample is the maximum X (n) (see Example
6.2.13). Since 6; > 6, a sensible test is to reject Hg when X(n) > c¢. The value of ¢ must
be chosen so that Pg,{ X(n) > ¢} = a. Wehave Pg{ Xy > c} =1—Pg{ Xy <c}
=1-JI Pe{ Xi <c} =1—TT7(c/00) =1 — (c/6)". Setting 1 — (c/Bp)" = o, we
solve to get ¢ = fp(1 — a)'/* .

Now we want to find # some k > 0 such that the conditions of the N-P Lemma, version 2, are
satisfied by R* = {& : £(5) > ¢ }. The joint pdfis f(z;0) = [\, f(z:;0) =
1L (1/6) I gy(z:) = (1/6™)I(0p)(z (ny) - The conditions are

(1/60) 00 (Tm) > k(1/65) 0py) (T (n) = T(m)> ¢
(1/61) 0o)(z(m) < k(1/68)Li0p,) (T () = T < c

The trick is to set k = 67/67. Then the conditions become
Tooy(@w) > Top)(T @) = T@>c

Lo (@) < Ip)Tm) = zm<c
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which reduce to
Op < z(n) <01 = z(n)>c.
This is true because ¢ = (1 — @)™ < 6.
Note that this is a UMP level « test for testing Ho : 6 = 6 versus Hy : 0 > 60y, ||

Example 8.3.5. Suppose X1,..., X, are i.i.d. Gamma(bo, ) where 5 > 0 is known and

B > 0 is an unknown parameter. Let us test Ho : § = By versus H; : 8 = [3;. Suppose

B; > Bo. This generalizes Example 8.3.3 which is the special case in which 6y = 1. The
likelihood ratio can be simplified so that the MP level « test can be expressed as: reject Hy if
S"X; > c. Note that this is a UMP level « test for testing Hp : B = By versus Hy : B> fo.
For finding the value of ¢ to achieve a given level a, we can use the fact that

Y. X; ~ Gamma(nég, 8) . ||

Example. Suppose Xj,..., X, arei.i.d. Gamma(é, 3y) where § > 0 is an unknown
parameter and By > 0 is known. Let ustest Hp : § = 8y versus H; : § = ;. Suppose

61 > 8y. Then the likelihood ratio can be simplified so that the MP level «a test can be
expressed as: reject Hy if 3 log X; > ¢. Note that this isa UMP level « test for testing
Hp : 6 = 8§y versus Hy : § > &g. For finding the value of ¢ to achieve a given level o, we
would like to know the cdf of 3 log X;, which is a sum of log-gamma random variables, but
as far as I know, there are no computer functions or tables for it. One could use a normal
approximation if n was large. If n was small, one could compute a saddlepoint
approximation, or one could simulate the distribution of } log X; under Hy by simulating

Gamma(8y, o) random variables (e.g., use gamrnd in Matlab). ||

Example 8.3.6. Suppose Xi,..., X, arei.id. Bernoulli(f) with unknown proportion &,
0<8<1. Wewanttotest Hy : @ = 0y versus H; : § = ;. Suppose 8y > 8y. Then the
likelihood ratio can be simplified so that the MP level « test can be expressed as: reject Hp if
5" X; > c. Note that this is a UMP level « test for testing Hp : 8§ = 6y versus Hy : 6 > B .
For finding a suitable ¢, we can use the fact that > X; ~ Binomial(n, §) . Due to the
discreteness of the Binomial distribution, only a limited number of levels « can be achieved
(unless a randomized test is used). ||

Example 8.3.7. Suppose X, ..., X, arei.i.d. Poisson(A) with unknown mean A > 0. We
want to test Hg : A = Ag versus H; : A = A;. Suppose A; > Ag. Then the likelihood ratio
can be simplified so that the MP level o test can be expressed as: reject Hp if ) X; > ¢.
Note that this is a UMP level « test for testing Hg : A = Ag versus H; : A > Ag. For finding

a suitable c, we can use the fact that 3 X; ~ Poisson(nA). Due to the discreteness of the
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Poisson distribution, only a limited number of levels a can be achieved (unless a randomized
test is used). ||

Example. Suppose X1, ..., X, arei.i.d. Normal(y,o?) with unknown mean z and
unknown variance ¢?. Suppose we want to test Hy : pw=0,0%=1 versus H; : =33
o2 = 1. This is the same as testing Hp : £ = 0 versus H; : 4 = 2 when o2 is known to be

equal to 1. As seen in Example 8.3.1 above, an MP level « has the form: reject Hy iff
N A Bk

Now suppose we want to test Hy: p =0, 02 =1 versus H; : p = 2, 02 = 4. The

likelihood ratio is

f(=:24)  (V/8r) T exp[~L3 (z,—2)7]

f=;0,1) = (\/ﬁ?)""exp[%%z.rf]
= 27"exp| 30w + T — 3]

Thus we see that the MP test rejects Hy iff %me + %E:c. > c. By “completing the

square”, we can re-express the test as rejecting iff > (z; + %)2 =y

Suppose we want to test Hp : £ = 0, 62 = 1 versus Hj : p=2,0"=9. By manipulating
the likelihood ratio, the MP test can be expressed as: reject Hy iff S (z; + 1)2 =@
Therefore, there is no UMP testof Hy: p =0, 0% =1 versus H; : p > 0, 02 > 1. “As

e T L e S T 3 P |

—
noted earlier, we would not expect a UMP test here because it is very rare for a UMP test to
_¢x1‘stw},f,,.tj._1§..ah‘.ﬁ:matwe- hypothesis.is 2-dimensional. ||

Example. Suppose X1,..., X, arei.i.d. from a Cauchy distribution with unknown median 8
,i.e, with pdf f(z;0) = 1/{x[1 + (z — 6)?]}. Letustest Hy: 6 = 0 versus H; : § = 8,
for a value 6; > 0. The likelihood ratio is

()= T1 [1+(zi—6: 2] "

f(z;0) _ i=1 k 1+$2
flz;0,) — (W)_"ﬁ [14<2] ‘.EI +(z; —81) :
i=1
ne tries to simplify the likelihood ratio with regard to  , but it seems that there is no “nice”
expression for the MP rejection region. It turns out that the MP rejection region is different for
different values of 6, . Therefore there is no UMP test of Hg:8 =0 versus H; : 8 > 0.
inding the value of ¢ to achieve a given level o would be difficult. One could simulate the
distribution of the likelihood ratio under Hy by simulating Cauchy random variables. I

The N-P Lemma does not require that the distribution in the alternative hypothesis be in the
same family as the distribution in the null hypothesis.
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Example 8.3.10. Suppose X, ..., X, arei.i.d. from some population with an unknown
distribution D. Letus test Hp : D = Normal(0, ) versus H; : D = Cauchy with median 0.
Under H, the joint pdfis fo(x) = 7 ™2exp( — Y z?), and under H,, the joint pdfis

filz) =7 "[[(1 + 2?)~!. An MP rejection region is defined by fi(z)/ fo(z) > k, which
is equivalent to [][exp(2?)/(1+ z2)] > k', or 3 [z? — log(1 + 2)] > c. This rejection
region does not have a “nice” form unless n = 1. For n = 1, the MP region is R* =

{z:2® —log(1+2%) >c}. Let h(t) =t —log(1 +¢t),sothat R* = {z : h(z2) > c}. The
derivative of A(t) is d%h(t) =1-1/(1+¢)=t/(141) >0 forall ¢t > 0. Therefore, h(t)

is a strictly increasing function, so h(z?) > ¢ iff 2% > ¢’ iff |z| > ¢". ||
The N-P Lemma 1s not restricted to i.i.d. samples.

Example. Suppose X, ..., X, are independent with distributions X; ~ Normal(fw;, 0?) .
This is the model for “regression through the origin”. That is, the data are assumed to follow a

linear regression model with intercept 0. Then

$@iB) = [l —sexp[ — 553 (@ — fw)’]

and the likelihood ratio for testing Hy : 8 = By versus H; : 8 = 3 can be simplified to

z; b & .
feh = o[ {8 = )L — 36t - 3]

n
G)I‘ B1 > fo, the MP rejection region can be expressed as > w;x; > c. Note that this is

=1

(UMP for testing Ho : B = [y versus Hy : 8> fBy. ||

The N-P Lemma is not restricted to samples of independent observations, as seen in Example
8.3.12.

Lemma. Let z be a data vector with joint pmf or pdf f(z ;) for some 6 € ©. Suppose
T'(z) is a sufficient statistic for . Let 6y and 6; bein ©. An MP test of Hyo: 0 =6

versus H; : @ = ) can be expressed so that it involves = only through T'(z) .

Proof. By the Factorization Theorem (Theorem 6.2.1), the joint pmf or pdf can be factored as
f(z;6) = g(T(x); 0)h(x) . Now the likelihood ratio is
[(z:61) _ g(T(z);01)h(z)  g(T(z);61)

f(z:60) = o(T(x);60)h(z) = ¢(T)iby) "
which is function of « only through T'(z). O
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Uniformly most powerful tests

In several of the examples above we noticed that an MP test derived from the N-P Lemma was

actually a UMP test. In all of these examples the model has the following property.

Definition. Let f(z;0), 6 € © C R, be a I-parameter family of pdf's or pmf's and let
T'(x) be areal-valued statistic. We say that the family has the monotone likelihood ratio
(MLR) property in T'(x) if, for all 8y < 6, the likelihood ratio f(z:;601)/f(x;6p) isan

increasing (or more generally, nondecreasing) function of T(x).

Note that the MLR property can be verified without finding the pdfor pmfof T'. This
property allows one to construct UMP tests.

Karlin-Rubin Theorem. Suppose f(z;6), 6 € © c R!, is a |-parameter family of pdf's or
pmf's that has the MLR property in a statistic T(xz). AUMP level « testof Hg : 6 < 6,
versus Hj : @ > 6 is obtained by rejecting Hy iff T'(z) > ¢ where Py {T(z) > c} = a.

Sketch of the proof. To get an MP test of Hy : 6 = 6, versus H; : 6 = 8y, we apply the N-P
Lemma, which tells us to reject Hy iff f(z;6,)/f(x;00) > k. The MLR property implies
that if 6, > 6, then the likelihood ratio is greater than k if and only if T'(x) is greater than
some c¢. By expressing the test in terms of T'(z) , we see that it does not depend on the

particular value of f; but only requires that 6; > 6. Therefore, the test described in the
theorem is a UMP test of Hy : 8 = 6, versus H; : 6 > B .

It can also be shown that this test is a UMP test of Hg : 0 < 6y versus H; : @ > 0y. The main
issue here is to show that the test has the correct level, that is, Po{T(z) > c} <
Po{T(x) > ¢} forall 6 < 6y.0O

Example. Suppose Xi,..., X, areii.d. Normal(y, 03) with o3 known. Take any o < fi1.
2\" 1 e 2

feim) _ (1/ 2mag ) exp| ;;022(13: )]

F(z; po) (1/\/27m§) exp[—ﬁgz(mi—p‘o)g]

- onl () - M.

200

= --- ()" z? cancels out) - --

Note that (p; — p19)/02 > 0 because pg < 1. Therefore, as ) z; increases, the exponent
increases, and so the likelihood ratio increases. Thus this family of pdf's has the MLR
property. Now we can apply the Karlin-Rubin Theorem and conclude that a UMP level o test
of Ho : pu < pug versus Hy : i > pg is obtained by rejecting Hy iff 5" x; > ¢ where
P{SXi>c}=a. |
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_ The Normal(g, o) family of pdf's is a special case of a /-parameter full-rank exponential
( family, which (see Section 3.8) is a family of pdf's or pmf's of the form
*)  f(=;8) = a(f)g(z)explb(6)R(=)]
for § € © C R'. For an i.i.d. sample from a Normal(y, o2) population,

flz;u) = (1/ 27r03)nexp[— 2%‘622(371'"#)2]

n n 2 1
= (1/ 271'0'(2]) exp[— ﬁ]exp[*w E{?me]exp[aﬁgzm]
n
which has the form in (*) with a(u) = (1/ 2mg) exp| — np? /203,

9(x) = exp[ — (1/202)> z?], b(i) = p/o?,and R(z) = S z;. Note that the expression i
(*) is not entirely unique. For example, we could also let b(p) = np/o?,and R(z) = 7.

Lemma. A 1-parameter full-rank exponential family, for which b(8) is a strictly increasing
function, has the MLR property in R(z).
Proof. For 6y < 6,

f(z;61) (61)g(z)exp[b(61)R(=)]  a(b:)
) = aGole@rpblo RG] = o) elb(@) ~ b R()]

( Since o < 61, then b(0y) — b(fy) > 0. Therefore, as R(x) increases, the exponent
increases, and so the likelihood ratio increases. O

Examples of 1-parameter full-rank exponential families for which b(8) is a strictly increasing

function occur for i.i.d. samples from:

Jammily b(8) R(z)
Normal(g, 03) , —00 < gt < 00 p/ag V.
Normal(yzg, 02) , 02 > 0 ~1/20% >o(xi — po)?
Exponential(8) , 8 > 0 ~1/8 3 x;
Gamma(éo,8), B> 0 ~ 1/ 2T
Gamma(§, B), § > 0 = 18 S log z;
Bernoulli(d) , 0 < 8 < 1 log(0/(1-6)) S
Poisson(A), A > 0 log(A) Y z;

Some families that are not 1-parameter full-rank exponential families nevertheless have the
F MLR property.
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Example. Suppose Xj, ..., X, areii.d. Uniform(0,8), 6 > 0. The joint pdf is
- f(z;6) = (1/8")I(06)(z(n)) . This is not an exponential family because the pdf's do not all

have the same support. Take any 6y < 6;. The likelihood ratio is
R e 2.

f(z;61) (/67 o) (zm)

flz3600) — (1/65) 106y (z(n)) -
If 0 < x(n) < 6o, then both indicators are 1, so the value of the likelihood ratio is og/0r. If
o < T(n) < 61, then the numerator is positive and the denominator is 0 and so the ratio is
co. If 81 < z(,), then both indicators are 0, so the ratio is 0/0, which is indeterminate. But
we can ignore the case when §; < T(n) because this event has probability 0 under both
distributions. Thus we see that the likelihood is nondecreasing as a function of Z(n) and
hence the family of joint pdf's has the MLR property.

By the Karlin-Rubin Theorem, a UMP test of Hy : 6 < 6y versus Hj : 8 > 6 is obtained by

rejecting H iff T(n) > ¢. Asnoted on p. 12 above, to obtain a UMP level a test, let
Czeg(l—a’)l/n. ”

Numerical example. Suppose X,..., X5 are i.i.d. Normal(, 9) . From the example on p.

16 above, we know that a UMP level .05 test of Hp : 1t < 200 versus Hy @ > 200 is
e obtained by rejecting Ho iff 3° z; > ¢ or, equivalently, iff T > b where

Pu—200{X > b} = .05. From the fact that X ~ Normal(200, 1.8) when p = 200, we find

that ¢ = 202.2068 . Let us check the power of this UMP test and compare it to some other

reasonable tests. Its power at p = 205 is P,_gos{ X > 202.2068} =

P{Normal(205,1.8) > 202.2068} = .9813.

Since the sample mean X is a reasonable estimator of the population mean p , it makes sense
to reject the null hypothesis in favor of x> 200 if X > b for a suitable value of b. Since p
is also the population median, the sample median X3, is also a reasonable estimator of w. A
sensible test would be to reject the null hypothesis if X, (3) > d for a suitable value of d. The
distribution of X (3) 1s not a well-known distribution, and so to obtain d we might resort to
simulation. That is, we can simulate a sample of 5 independent observations from the
Normal(200, 9) distribution and calculate the median and repeat this until we have, say,
10,000 medians. The 95-th percentile of these 10,000 numbers is an estimate of d . In one
such simulation, this produced d =~ 202.6. To calculate an estimate of the power of this test
at g1 = 205, we can simulate a sample of 5 independent observations from the
Normal(205, 9) distribution and calculate the median and repeat this until we have, say,

' 10,000 medians. The proportion of these medians that are greater than 202.6 is an estimate
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of the power. In one such simulation, this produced a estimated power of .93. Of course this
si less than the power of the UMP test.

Another test to try could be based on the sample maximum. Reject the null hypothesis if
X(sy > k for a suitable value of k. Here again we could use simulation. One such simulation
produced k = 207.0 with the power at x = 205 estimated to be .76. ||

Two-sided alternative hypotheses

Suppose we have a data vector = and have formulated a probability model with joint pdf or
pmf f(z;60) for some 1-dimensional parameter § € @ C R!. The Karlin-Rubin Theorem
concerns testing against a one-sided alternative. Sometimes we are interested in testing
against a two-sided alternative, H : § = 6 versus H; : 8 # 8. Is there a UMP level a test?
To be a UMP level o test of H : § = 6 versus H;j : @ # g, the test must be a MP level « test
of Ho : 8 = 6 versus H; : 0 = 6, forall 6, # 6. Said another way, this same test must
simultaneously be (a) a UMP level o test of H: 6 = 6 versus Hj : 6 > 6y and (b) a UMP
level atestof H: 0 =0y versus H; : 8 < 6.

Only in special cases (for example, for 1-parameter families with the MLR property) does
there exist a UMP test as in (a) or as in (b). In these special cases, typically the two tests are
different and hence (if the two UMP tests are unique, which they typically are), there is no
UMP test against the two-sided alternative.

Example. Suppose X,..., X, areii.d. Normal(y,o2) with o2 known. The UMP level
testof Hg : pu = po versus Hy : p > o is unique, and it rejects Hy iff T > ¢ for a suitable
c. The UMP level a test of Hg : o = po versus Hy : pu < py is unique, and it rejects Hy iff
T < ¢ forasuitable ¢’. We see that these two tests are different, and so there is no UMP test
of Hy : pp= po versus Hy : p # po. || )

The following example is an unusual instance in which there is a UMP test against a two-sided
alternative.

Example. Suppose Xj, ..., X, arei.i.d. Uniform(0,8). On p. 12 above we found a UMP
level o test of Hy : 6 = 6y versus H; : 8 > 8. Is this test also UMP versus H; : 0 < 007
No, it is not, but in this example a UMP level « test of Hy : 8 = 8 versus H; : 8 > 6, is not
unique. Consider the following two tests:

Test 1. Reject § = g in favor of 6 > 6y if x5y > (1 — a)/™.

Test 2. Reject 8 = 6 in favor of 6 > 8, if Z(n) > Op or T(y) < Goal/™ .
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Test 1 is the UMP test from p. 12. To calculate its power, we can use the fact that

Pg{X(n) < t} = [Pe{X1 < t}]* = (¢/6)™. Its power at an alternative parameter 8; > 6 is
Pg,{Xm) > O0(1 — a)/"} =1 - Py, {X () < Op(1 — @)/} =
1—[f(1—a)//ey"=1- (f0/01)™(1 — @) . Next, the power of Test 2 at 8, is

Pg,{Xn) > 0o or X(n) < B0a/™} = Py, {X(ny < 800"} +1 — Py {X () < 00} =

(B /™/0,)™ + 1 — (60/61)™ = 1 — (B/01)™(1 — «) . We see that Test 2 has the same power
as Test 1, so it is also a UMP level a test of Hp : # = @y versus Hy : 8 > 6. It can be
shown, by using version 2 of the N-P Lemma, that Test 2 is an MP level a test of Hy : § = 6,
versus Hy : 8 =6, forall 0 < #; < 6y. Therefore, Test 2 is a UMP level « test of

Ho:6 =0g versus Hy : 0 # 6y. ||

In situations in which there is no UMP test, we may decide to restrict our attention to a
particular subclass of tests. We may be able to find a test that is UMP in the smaller class of
tests. A sensible property for a test to have is to be unbiased. This means that there is a
greater chance of rejecting the null hypothesis when it is false than when it is true. More

precisely, a test is said to be level o unbiased if its power function satisfies Q(6) < « for all
6 € By and Q(0) > « forall 6 € O;.

Example. Suppose Xj,..., X, areiid. Normal(y,o3) with o2 known. As seen on p. 19
above, there is no UMP level a test of Hg : o = p versus Hj : o # po. There is, however, a
UMP level o unbiased test, i.e., a test that is UMP among all level o unbiased tests. This test
is the one that rejects Ho iff |X — 9| > ¢ for a suitable c¢. Equivalently, this is the two-
sided z-test that rejects Hy iff 2z > k where z = [X — po|/(00//n). ||
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Notes on Confidence Interval Estimation

(see Ch. 9 in Mukhopadhyay)

Basic definitions

Let z be a vector of observed data. As a probability model for the data, suppose we have
assumed a family of pdf's f(z ; #) parameterized by a real-valued parameter § € 6 C R
An upper confidence limit for @ is a real-valued statistic Ty(z). Actually it can be any
statistic, but we call it an upper confidence limit if it is chosen with the intention that there is a
high probability that § < Ty(X). Similarly, a lower confidence limit for 0 is a real-valued
statistic 7i,(x) which is chosen with the intention that there is a high probability that

TiL(X) < 8. A confidence interval for 0 is a pair (Ti(z), Tu(=x)) consisting of a lower
confidence limit and an upper confidence limit.

The coverage probability of a confidence interval is Po{Ti(z) < 6 < Ty(z)}. This
probability may depend on @, but in many common examples, the coverage probability is the
same for all . The confidence coefficient of a confidence interval is the infimum of the
coverage probabilities for all 4.

” Example. Suppose Xi,..., X5 areiid. Normal(y, 9) .

(a) Consider (X —1,X +1) as a confidence interval for p . Its coverage probability is
P{X - 1<p<X+1}=P{-1<X-p< 1} =P{-1 < Normal(0,1.8) < 1} =
-0439. This does not depend on 4 and so it is also the confidence coefficient. In this
experiment we can be 54 % confident that the true t liesbetween X — 1 and X + 1.

(b) Next consider (3X,2X) as a confidence interval for ft . Its coverage probability is
P.3X <pu<2X} = Pﬂ{%u <X < 2u}
=P {-ju<X-p<py}
= Pu{ - 31/V18 < (X — 1)/ /18 < p//1.8}
= Pu{ - $/V/1.8 < Normal(0,1) < p/+/1.8}
= ®(u/V/18) - ®(- 1p/\/18).

The coverage probability depends on p- At p =0, the coverage probability is ®(0) — &(0)
= 0. So the confidence coefficient is 0. However, if we are able to assume that i > 5, then
the confidence coefficient is .9687 . I

L
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Inversion of a test

There is a close connection between the concept of hypothesis testing and the concept of
confidence interval estimation. Suppose (71.(X),Ty(X)) is a confidence interval for 8 with
confidence coefficient .95. Then we are 95% confident that the true 8 will lie in the interval.
A sensible test is obtained by accepting Hy : 0 = 6y iff 6y is in the interval. Equivalently, we
reject Ho : 8 = 0y iff G is outside the interval. Such a test has level .05 because

Pg,{reject Ho} = 1 — Py, {accept Ho} = 1 — Py {T1.(X) < 0y < Ty(X)}. Since the
confidence coefficient is .95, the coverage probability is > .95 forall #. In particular,

Pg, {TL(X) < fo < Ty(X)} > .95, and so Py, {reject Ho} <1 — .95 = .05.

It is convenient to generalize the concept of a confidence interval. A confidence region for a
real-valued parameter € is a random set C(X) in the real line R! defined in terms of the data
vector. In practice we prefer regions that are intervals, C(X) = (TL(X), Tu(X)) or

C(X) = (=00, Ty(X)) or C(X) = (TL(X), 00) . But when discussing the theory of
confidence intervals, it is convenient to allow more general regions. The coverage probability

of the confidence region is Pg{6 € C(X)} . The confidence coefficient of the confidence
region is the infimum of the coverage probabilities for all 4.

As with a confidence interval, a confidence region can be used to test hypotheses. Given a
confidence region C(X) for €, we can test Hp : 6 = 6y by accepting it iff 0y € Gl X )., Lek
7 be the confidence coefficient of the confidence region, so that Pg,{#y € C(X)} > ~. Then
the size of the corresponding test is Py, {reject Ho} = 1 — Py, {accept Ho} =

1 —Pg, {0 € C(X)} < 1— 1, so the test has level 1 — ~.

Note that the rejection region of the test can be described as R(0g) = {z : 6y ¢ C(z)} . This

says that = € R(6p) iff 6y ¢ C(x), which expresses the “inverse” relationship between
rejection regions and confidence regions.

In the preceding paragraph we started with a confidence region with confidence coefficient Y
and “inverted” it to obtain a test of level 1 — . Conversely, given a testing procedure of
level a for testing any simple null hypothesis, we can “invert” it to obtain a confidence region
with confidence coefficient > 1 — «. (Sometimes, but not always, the region is an interval.)
The idea is that 6y € C(z) iff = ¢ R(8),or C(z) = {0y : = ¢ R(6o)}. Thatis, the
confidence region consists of those values of 6§, that would not be rejected by the given
testing procedure for the observed data vector = . Note that the coverage probability is

Pg, {60 € C(X)} = Pg{X ¢ R(80)} = 1 — Pg,{X € R(6p)} =

1 —Pg,{Typelerror} > 1 - a.
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The condition for o to be in the confidence region is ¢ R(6). On the one hand, this

condition completely defines the confidence region, but on the other hand, it can usually be re-

expressed in a simpler form by “isolating” 6, .

Example. Consider the level .05 test in the example on pp. 4-5 above. The test rejects

Ho : ¢ = 200 iff |X — 200| > 2.63. Can we invert this test to obtain a 95% confidence
region? Not exactly — we need a testing procedure for testing Hg : p = o for an arbitrary
fto . The testing procedure is to reject Ho : o = g iff [ X — 19| > 2.63. Forany g, this
test has level .05. The rejection region is R(u) = {z : |7 — po| > 2.63}. The
corresponding confidence region is C(z) = {uo : = ¢ R(10)} . Now note that = ¢ R(10)
iff |T — po| < 2.63 iff T—2.63 < py <7+ 2.63. Thus we see that Clop) =

[z —2.63,7+2.63]. This is a 95% confidence interval for the true 1. ||

Example. Suppose Xj,..., X, areii.d. Gamma(§y, §) where &y > 0 is known and 8>0
1s an unknown parameter. On p. 13 above we saw that a UMP level « test for testing

Ho : B = [y versus H; : 8 > fBy rejects Hy iff >.zi>c,where Pg{d>X;>c} =a. We
know that ) X; ~ Gamma(néy, 3), and so ¢ = gaminv(l — a, nédp, By) . This is Matlab
notation; in S-Plus ¢ = fyxqgamma(l — «, nép) . We can invert this test to obtain a
confidence region (hopefully an interval) with confidence coefficient 1 — . The confidence
regionis C(z) = {fo: = ¢ R(By)}. Note that = ¢ R(Bo) iff Yz; < ¢ =

gaminv(l — a, ndg, Bo) .

Given a numerical value of ) x;, a straightforward but computationally intensive way to
determine the confidence region is to calculate gaminv(1l — &, nby, Bp) for many values of
Bo and notice when itis > 3 z;. This gives only an approximation to the confidence region
the goodness of the approximation depending on how many values of 3y are tried.

3

A more precise way to determine the confidence region is to use the fact that

(2/B)>°X; ~ Gamma(néy, 2) = x2(2néy). Then Y z; > c iff (2/Bo0)> z; > k, where
Pa{(2/B0) X > k} = P{x*(2ny) > k} = a. So k = chi2inv(l — a, 2n6,), which
does not depend on By . Now z ¢ R(f,) iff (2/80)Y z; < k iff B > (2/k)> z:.

Therefore, (2/k)} z; is alower (1 — a)-confidence limit for 3. I

Pivotal approach

Let = be a data vector whose distribution is assumed to have pdf f(z;0) for some real-
valued parameter 6. A pivot can be used to construct a confidence region for §. A random
variable U = U(X, ), which is a function of both the random data vector X and the
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parameter 6, is a pivot if its distribution under the distribution with pdf f(z:8) does not
depend on 6. Of course the distribution of X does depend on 6 and so the function ~
U(X,0) mustinvolve § in such a way that it cancels out the distributional effect of § in the

distribution of X . This will become clearer in the examples.

The most useful pivots are functions of a minimal sufficient statistic. So when looking for a
pivot, a good thing to do first is to find a minimal sufficient statistic, say 7°(X). Then
consider the distribution of T'(X') and try to figure out how the dependence of its distribution
on 6 might be cancelled out by some function U (T(X),8).

The most common pivots are of the following three kinds.
(1) U isalocation pivot if it has the form U = T(X) — a(f) for some statistic T(X) .
(ii) U is a scale pivot if it has the form U = T(X)/b(6) .

(iii) U is a location-scale pivot if it has the form U = [T'(X) — a(8)]/b(6) .

Examples. (a) Suppose X1, ..., X, arei.i.d. Normal(y,0?). Then X isa minimal
sufficient statistic (by Theorem 6.3.3). Its distribution is X ~ Normal(y, 03/n) . Note that
X — p ~ Normal(0, o%/n), which is a distribution not depending on . Therefore, X — s
is a location pivot. Also, /n(X — p)/oyp is a pivot because its distribution is Normal(0, 1) .

(b) Suppose Xji,..., X, arei.i.d. Normal(pg,0?). Then T = 3 (X; — pg)? is a minimal
sufficient statistic (by Theorem 6.3.3). To describe the distribution of T, we might note that
X; ~ Normal(yo, 0%) = (X; — pt9)/0 ~ Normal(0, 1) = (X; — p0)?/0? ~ x*(1) (see
Example 4.4.3) = Y7 (X; — po)%/0? = T/o? ~ x?(n) (see Theorem 4.3.2(iii)). At this
point we see that T'/o? is a scale pivot.

(c) Suppose Xi,..., X, areiid. Gamma(dg, ). Then T = 5 X; is a minimal sufficient
statistic (by Theorem 6.3.3). We know T' ~ Gamma(néy, 5) (by Theorem 4.3.2(ii)). Also,

T'/B ~ Gamma(ndy, 1) (by using Theorem 4.4.1 or Theorem 4.3.1). Therefore T'/( is a
scale pivot. ||

Next we show how a pivot can be used to obtain a confidence region for the parameter. Since
the distribution of a pivot U = U(X, 8) does not depend on @, its quantiles do not depend
on #. Let a be the %a-quantilc of the distribution of U , thatis, P{U < a} = %a, and let b
be the (1 — 1a)-quantile of the distribution of U, thatis, P{U < b} =1 — 3o . Then

Pla <U(X,0) <b} =1—a forall . Define a confidence region to be Cla) =

{0:a <U(x,6) <b}. Its coverage probability is Pe{f € C(X)} =

Po{a < U(X,0) <b} =1—« forall 4.
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Although the condition @ < U(z,8) < b completely defines the confidence region, one
should try to manipulate the inequalities to achieve a more direct description of the region.
Often this leads to an interval Ti (z) < § < Ty(z) (or Ti(z) < 6 < Ty(zx)). However, it is
not always possible to find a pivot that allows easy manipulation of the condition
a<U(z,8)<b.

Examples. (a) Suppose X1,..., X, areiid. Normal(u,o?). Above we saw that X — p is
a pivot with distribution Normal(0, o5/n) . Its a-quantile and (1 — a)-quantile are

a = norminv(3e,0,00/+/n) and b= norminv(l — 1a,0,00//n) respectively. This
yields the (1 — a)-confidence region {pz:a < X — < b}. Sincea < X — pu < b iff

X — b < 1 < X — a, the confidence region for g is the interval (X —b,X —a). Since the
Normal(0, 0% /n) distribution is symmetric about 0, we see that a = — b, so the interval is
(X —b,X +b). Thequantile b could be obtained from a standard normal table by re-
expressing itas b = (do//n)®"1(1 - 1a).

(b) Suppose Xi,..., X, arei.i.d. Normal(ug, 02). Above we saw that 3 (X; — pg)?/c?
is a pivot with distribution x*(n). Its 7a-quantile and (1 — 10)-quantile are

a = chi2inv(le,n) and b = chi2inv(l — s, n) respectively. This yields the (1 — )-
confidence region {o? : a < 3_(X; — ug)?/0? < b}. Since a < S (X; — po)?/o? < b iff
Do(Xi — po)?/b < 0 < Y (X; — 19)?/a, the confidence region for o? is the interval
(C(Xi = 10)? /b, 3(Xi — po)?/a).

(c) Suppose Xj,...,X, areiid. Gamma(8y, 3). Above we saw that > X,/ is a pivot with
distribution Gamma(néy, 1). Its {o-quantile and (1 — })-quantile are

a = gaminv(3a,né,1) and b = gaminv(1l — e, néy, 1) respectively. This yields the

(1 — a)-confidence region {#:a < Y X;/B < b}. Sincea < ¥ X;/B < b iff

2 Xi/b < B <Y X;/a,the confidence region for 3 is the interval O-Xi/b,> Xi/a).
The quantiles could be obtained from a chi-squared table by re-expressing them as

a = jchi2inv(e,2nép) and b = Jchi2inv(l — la,2néy), provided that 2néy is an
integer. ||

Confidence regions in models with a vector-valued parameter

Suppose the model is parameterized by a parameter vector 6. Suppose we are interested in a
particular real-valued parametric function 7(6). A confidence region for 7(8) can be

obtained either by inverting a test or by pivoting.
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If we have a test for testing Hg : 7(8) = 7 for an arbitrary 79, then the test can be inverted to
obtain a confidence region for 7(8). Let R(7g) be the rejection region of the test. As before,

we define the confidence region to be C(z) = {m: = ¢ R(70)} -

A pivot in this situation is a real-valued random variable U = U(X, 7(8)) whose
distribution does not depend on €. Given a pivot, a confidence region can be constructed

from the quantiles of U , as before. .

Examples. (a) Suppose X, ..., X, arei.i.d. Normal(y, o?) with both parameters unknown,
and suppose we want to focus our attention on zz. We know that (X, S?) is a minimal
sufficient statistic (Example 6.3.4). We would like to find a function U (X, S?, 1) whose
distribution does not depend on p or o. Such a function was discovered by W.S. Gosset
(Student) in 1908. The pivotis U = (X — p)/(S/+/n), which has a ¢(n — 1) distribution.
Its Ja-quantile and (1 — ja)-quantile are @ = tinv(3a,n—1) and b=

tinv(l — %a, n — 1) respectively. Since a t distribution is symmetric about 0, then

a = —b. This yields the (1 — a)-confidence region {p: —b < (X — p)/(S//n) <b}.
Since — b < (X — p)/(S/+/n) < b iff X —bS//n < p< X +bS//n, the confidence
region for p is the interval (X — bS/\/n, X +bS//n).

(b) Again suppose X1, ..., X, are i.i.d. Normal(y, 02) with both parameters unknown, but
now suppose we want to focus on ¢? . We would like to find a function U (X, 5%, 0%) whose
distribution does not depend on y or 2. We can use the pivot U = (n — 1)S%/0?, which
hasa x?(n — 1) distribution. Its %a-quantile and (1 — {o)-quantile are

o= chiZinv(%a,n —1) and b= chi2inv(l — Ja,n — 1) respectively. This yields the
(1 — a)-confidence region {02 : a < (n—1)S?/0? < b}. Since a < (n — 1)S5%/0? < b iff
(n—1)S?/b < 0% < (n— 1)S?/a, the confidence region for o is the interval

((n—1)8%/b,(n—1)S%/a). ||

Continue to suppose the parameter is a vector €, and now suppose we are interested in several
real-valued parametric functions 71(8), ..., 7m(8) . Suppose we know how to construct a
confidence interval for 7;(6) for i = 1,...,m. Let J;(z) be a confidence interval for 7;(8)
with confidence coefficient «;. Then Pg{7;(8) € J;(X)} = ;. Each individual statement
7i(0) € J;(X) is true with probability -y, , but what is the probability that all 'y statements are
true? By the Bonferroni Inequality (Theorem 3.9.10),

Po{m:(0) € J;(X) foralli=1,....m}>m+ - +9m—(m—1)

and so the joint confidence coefficient of these intervals is at least y; + -+ + ¥m — (m — 1).

If we write ; = 1 — o, then the joint coefficient becomes 1 — (a; + -~ + @) . To achieve



Wiy

a joint confidence coefficient of at least 1 — a, we could construct intervals J; with

confidence coefficients 1 — a/m.

Example. Suppose Xi,..., X, arei.i.d. Normal(u,o?) with both parameters unknown.
From part (a) of the preceding example, with a = .025, we know that a 97.5%-confidence
interval for p is (X —bS/y/n, X + bS/+/n) where b= tinv(.9875,n — 1). From part
(b) of the preceding example, with o = .025, we also know that a 97.5%-confidence interval
for 0% is ((n —1)S8%/d, (n — 1)5%/c) where ¢ = chi2inv(.0125,n — 1) and

d = chi2inv(.9875,n — 1). So we have joint confidence of at least 95% that

X —bS/y/n<p<X+bS/y/nand (n—1)5?/d < o® < (n—1)8%/c. |

The accuracy of a confidence interval

One way to measure the accuracy of a confidence interval is by its width. Given two 95%-
confidence intervals for a parameter €, we prefer the one with the shorter width. If the

intervals have random widths, we might prefer the one with the shortest expected width.

Example. Suppose Xi,..., X, arei.i.d. Normal(y,o2). Above we obtained a (1 — a)-
confidence interval for y tobe (X —b,X +b) where b = norminv(l — 1a,0,00//n).
This interval was derived from the fact that P,{ —b < X — < b} = 1 — . More
generally, if by = norminv(l — ay,0,00/\/n) and b, = norminv(1 — as,0,00/+/n)
where a1 + as = a, then P,{ —b; < X — pu < by} = 1 — «, which leads to

(X — by, X + b;) asa (1 — a)-confidence interval for x. The width of the interval is

by + by . Which choice of a3, as gives us the shortest width? The answer is a; = ag = %
This is because the distribution of the pivot X — ;1, namely Normal(0, 0% /n) , is symmetric
around O and is unimodal. See Figure 9.2.7. ||

.

Example. Suppose Xj,..., X, arei.i.d. Normal(y, 0?) with i and % unknown.
Previously we obtained a (1 — a)-confidence interval for x to be

(X - bS/\/n,X +bS/\/n) where b = tinv(l — sa,n—1). If

by = tinv(l — ay,n — 1) and by = tinv(l — ay,n — 1) where a; + a3 = a, then

(X —b2S/y/n, X + b1S/4/n) isalso a (1 — a)-confidence interval for . Its width is
(b1 + b2)S/+/n and its expected width is (b1 + by)E(S)/+/n . Among all the possible
choices of a1, ay, the width is smallest when b; + by is smallest. Since the distribution of

the pivot is ¢(n — 1), which is syfnmcetric around O and is unimodal, the best choice is
O] = g = %0.‘ 2 ” .
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Confidence intervals in some two-sample problems

Let us review the pivotal approach to constructing a confidence region for a real-valued

parametric function 7(@) of a parameter vector 6. There are four steps.
(a) Find a minimal sufficient statistic T" for 8.

(b) Determine the distribution of 7", perhaps after taking a one-to-one transformation to

obtain a new minimal sufficient statistic whose distribution is easier to describe.

(c) Using the information in (b), find a pivot U(T", 7). The function U should involve 6
only through 7(@). Preferably, the distribution of U should be one whose quantiles are
available (in a formula or a table or a computer package).

(d) Letting a and b be the «/2 and 1 — /2 quantiles of the distribution of U,

manipulate thcl ualltlcs a <U(T,7) < b toisolate 7. This produces a (1 — a)-
conﬁder;;g interval)or 7.

Example 9.3.1. Suppose Xii,..., X1, are ani.i.d. sample from a Normal(y;, 02)
population, Xo1,..., Xs,, are an i.i.d. sample from a Normal(ps , 0®) population, and the two
samples are independent. This model has three unknown parameters i , yp and o2. Note
that the two populations are assumed to have a common variance. Our goal is to construct a

confidence interval for p; — po.

(a) Since the two samples are independent, the joint pdf of the data is the product of the joint
pdf's of the two samples:

f@sp1, pp,0?) = (ﬁ)
X (Vi-;)mexp[ - TigZ(hi — #2)2]
(7227)“1“2@"9[ - '2‘;_22(31:' —m)?* + X (w2 — ‘“2)2]

ni+n 2 2
() o] - 3 - 3

Lo 202~ 20?
1
X "-XP[— 57 (Cadi+ Yad) + 5w + %Zmzi] :

We see that this is a full-rank exponential family. Theorem 6.3.3 implies that T =
(X1, )Xo, - X% 4+ Y X2,) is a minimal sufficient statistic.

(b) The distribution of Y X?; + Y X2, is difficult to describe, so we make a one-to-one
transformation from T" to W = (X1, X2, Y_(X1; — X1)? + Z(Xg, X1)?). To see how
W is a transformation of T, recall that ) (X; — X)? = Y- X? - nX’ (see formula (4.4.9)).

n

GXP[ e #1)2]
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We can write the last component of W as W3 = (n; — 1)S? + (n2 — 1)S2. We know

(ny — 1)S2/0? ~ x*(n1 — 1) and (ng — 1)S}/0? ~ x*(ny — 1) (Theorem 4.4.2(ii)). Since
the two samples are independent, Theorem 4.3.2(iii) implies that W3/a? ~ x?(n; +ng — 2).
We also know X; ~ Normal(u, 0?/n;) and X3 ~ Normal(us, 0?/ns).

(c) We want a pivot for gy — pa. Wesee X — Xy ~ Normal(pe; — po,0%/ny + 02/no)
and so

(Xl y2) (.U'l —#2)
+

nl

~ Normal(0, 1) .

This is a pivot, but it is not a pivot for p; — 2, because it also involves . A pivot for

(1 — po should involve the parameters only through 1) — po . What we can do is use W3 to
cancel out . Recall Definition 4.5.1, which says that if Z ~ Normal(0,1), V ~ x?(m),
and Z and V are independent, then Z/,/V /m ~ t(m). By Theorem 4.4.2(i) and the
independence of the two samples, W; is independent of X; and X,. Therefore

(Xl—Xz) (1“ —ta) /\/ W3/0?)[(n1 +n2—2) ~ t(ni+n,—2) .

Note that ¢ cancels out. We have

Wy (u-1)SE+(m—-1)S
n+ne—2 ny+ng—2

= 88 .
the pooled sample variance (formula (4.5.7)). The pivot can be written as
U — (X1—X3)— (m )
Seyfag+
(d) Let b= tinv(1l — %a,nl +ny—2). Then P{—b< U <b} =1—aq forall p;,ps
and ¢?. Manipulate —b < U < b, that s,
(Xl —X2)— 011 “H2)

ENEEE

to obtain the (1 — a)-confidence interval

= / = == [1 1
X1—Xo—bSp %+%<M1*H2<X1—X2+bsp n—1+n—2- I

Example. Suppose X)i,..., X1, areani.i.d. sample from a Normal(y, o?) population,

Xa1y..., Xon, are an i.i.d. sample from a Normal(y, 02) population, and the two samples are
independent. The model has four unknown parameters p; , g, 0 and 02 In this example
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we are not assuming that the two populations have a common variance. Our goal again is to
construct a confidence interval for p; — 1o . We try to follow the same steps as in the

preceding example. The steps are summarized below.
(a) A minimal sufficient statistic is T" = (R X9sSF 52
(b) X1 ~ Normal(p1,03/n1), X3 ~ Normal(us, 03/n2),
(1 — 1)S2/02 ~ X% — 1), (nz —1)S3/03 ~ x*(n2 = 1)
() X1 — X3 ~ Normal(p — p12,0%/n1 + 03/ns) and so
(X1 =Xp)— (1 —p2)

\/O-T 02 el Nomal(o, ].) .
142
np o n3

This is a pivot, but it is not a pivot for 1 — jt2, because it also involves o2 and o} . Atthis
point we would like to find a function g(S?,52) such that

53,5)/( % ~x2-

Unfortunately, it seems that no such function exists. This is one way in which the analysis of

two normal samples is more difficult without the assumption of common variance. ||

Example9.3.4. Suppose Xii, ..., X1n, arean i.i.d. sample from a Normal(y, 07)
population, X1, ..., X2n, are anii.d.sample from a Normal(y, , 03) population, and the two
samples are independent. This model has four unknown parameters fty, p2, o?and 03. In
this example we are not assuming that the two populations have a common variance. Our goal
is to construct a confidence interval for the variance ratio o1/o3. We follow the same four

steps as in Example 9.3.1. The steps are summarized below.
(2) A minimal sufficient statisticis T' = (X1, X2, 57 ,53) -
(b) X ~ Normal(py,0}/n1), Xa~ Normal(ps, o3/na),
(ny — 1)82/0? ~ x%(n1 — 1), (na—1)53/03 ~ x*(n2 = 1)
The four components of 7" are independent of one another.

(c) Recall Definition 4.5.2, which says that if V ~ x*(m), W ~ x%(p), and V and W are
independent, then (V /m)/(W /p) ~ F(m,p). Therefore U = (S2/03)/(S2/03) =
(82/52)/(0%/02) ~ F(ny — 1,mp — 1), 50 U isa pivot for g las.
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(d) Let a = finV(%a,nl —1,np—1) and b= finv(l — %a,nl —1,n5—1). Then
P{a < U < b} =1—a forall g, pip,0} and 05. manipulate a < U < b to obtain the
(1 — a)-confidence interval

S 9% o St
55—22<a%<a522'”

Example 9.3.6. Suppose Xi1,..., Xin, are ani.i.d. sample from a Uniform(0, 6;)
population, Xo1, ... , Xan, are an i.i.d. sample from a Uniform(0, §2) population, and the two
samples are independent. This model has two unknown parameters ¢; and . Our goal is to

construct a confidence interval for the ratio 6,/6; .

(a) A minimal sufficient statistic is T = (7} ,T) where T} = max{Xi1,..., X1n,} and
T2 = max{Xgl, ,Xgn,z} s

(b) From section 4.2.3 we know that the cdf of T} is Fi(t) = (¢/6;)™ and the cdf of T3 is
Fy(t) = (t/62)™ . Another way to describe the distributions of Ty and T3 is to say that
T1/0; has cdf Fl(u) =u™ and T5/60; has cdf E(U) = ™,

(c) Weseethat U = (11/61)/(T2/0,) = (11/T5)/(6:1/02) is a pivot for 84/05. However, it
is not obvious how to determine the quantiles of the distribution of U . From the boxed

statement on p. 182 of the textbook, we know that (77/6;)™ ~ Uniform(0, 1) and

— log|[(T1/6:)™] = — nilog(T1/6:) ~ Exponential(1). Similarly,
— nplog(Ty/6,) ~ Exponential(1) . In order to be able to obtain a nice distribution for the
pivot, let us now suppose the sample sizesare equal, ny = ng =n. Let W = —nloglU =

— nlog(71/60;) + nlog(T2/62) . The distribution of W is that of the difference of two
independent Exponential(1) random variables. This distribution can be derived by the method
in section 4.4.1. Its pdfis f(w) = Je~™!. The (1 — jo)-quantile of W is ¢ satisfying
fqoof(w)dw = Lo, which can be solved to obtain ¢ = — log .

(d) P{loga < W < —loga} =1—q« forall §; and 8. (Note that loga < 0 because
0 < a < 1)Manipulate loger < W < — log e, that is,

/T
loga < nlog(giﬁej) < —loga .

We obtain

T —-n
loga < log(();;g;z) < loga™,

Ty /T \ " 1
or a<(91/62) <e,
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1T, 8 ~Lr1
21 5} a4
or an(T2) <g <@ (Tz) .
This is a (1 — a)-confidence interval. ||

Multiple comparisons using the Bonferroni Inequality

Consider an experiment to compare four formulas for making cement. Using each formula, n
specimens were made and after a month their compressive strengths were measured. Denote
the strength measurements by Xy, ..., X1, Xo1, ..., Xon, Xa1, ..o, Xan, Xagyooo, Xan.
We will assume that these are four independent samples from normal populations having
means that are possibly different but with a common variance. That is, the Xi;'s are all
independent with X;; ~ N(u; ,0?).

For comparing cement formulas 1 and 2, we can construct a confidence interval for p; — pg

as in Example 9.3.1. Using only the samples for these two cement formulas, we can construct
a (1 — a)-confidence interval for p; — pg to be

e P 2 — JR—
from (X1 — X3) —t2n-9)as25py/ = to (X1— X3)+tn-2)a/25 2
T n

where S} = (S?+ S2)/2. Another interval, which is likely to be narrower, can be obtained

by using all four samples to estimate ¢®. That is, let S = (S? + 57 + 57 + 52)/4 and
construct the interval

from (71 — :Yg) — t(4n_4)‘a/23\/% to (71 — Yg) + t(4n-4)a 25/ % y

We have confidence 1 — « in this interval if we are focusing on the difference 11; — po alone.
But often we would be interested in the differences between all 6 pairs of means: p; — o,
M1 — (3, 1 — (4, fL2 — [43, [L2 — [i4, L3 — fL4. Suppose we want to construct confidence
intervals for the differences between all pairs of means and that we want our joint confidence
to be at least 1 — «. One way to do this is to use the Bonferroni Inequality as on pp. 26-27

above. For each of the 6 pairs 4,k of distinct indices 1, 2, 3, 4, construct the interval

- = /2 - - [z
from (X; — Xi) = tan—-4),0/125 o o (Xi— X)) +tn-1)a/125 g

Note that the ¢ quantile is for a/12 (not «/2). Therefore each individual interval has
confidence coefficient 1 — /6, and hence our joint confidence in the 6 intervals is,
according to Bonferroni's Inequality, > 1 — «.

In some situations, we are not interested in all the pairwise comparisons between treatments
but only the comparisons involving a standard treatment. Suppose cement formula 1 is the

one currently being used by a cement manufacturer and that formulas 2, 3, and 4 are new
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formulas that this experiment is designed to test. Then the only differences of interest are the

3 differences py — pt2, p1 — p3,and gy — py. For i = 2,3, 4, construct the interval

_ — 2 = —_—
from (X1 — X,') — t(4n‘4).a/55 = to (Xl — Xi) + t(4n_4)‘a /GS 2 :
n n

Note that each individual interval has confidence coefficient 1 — /3, and hence our joint
confidence in the 3 intervals is, according to Bonferroni's Inequality, > 1 — . By focusing
on these 3 differences, we obtain slightly narrower intervals than in the preceding paragraph

where all 6 differences were of interest.

Multiple comparisons using the multivariate ¢ distribution

Section 9.4.2 presents another way to obtain joint confidence intervals for f1— Mo, 1 — p3,
and 1 — puq . We will again use the pivotal approach. A good starting point is a minimal
sufficient statistic. A minimal sufficient statistic for this model is (X;, X,, X3, X4, S?)
where S% = (S7+ 52+ 52+ S})/4.

We want to find a pivot for § = (61,8,83) = (1 — po, g1 — (3, 1 — ptq)" . Of course the
differences of the corresponding sample means must be relevant, so let ¥ = (Y},Y,,Y3)’

= (X1~ X5, X1 — X3, X1 — X4)'. The random vector Y has a multivariate normal
distribution N3(§,0%H) where the entries of the matrix o2H are the covariances
Cov(Y;,Y:) = o*hy. For i = k, this says that Var(Y;) = o2hy;. Check that hi=2/n
and hy = 1/n for i # k. Wesee that (Y — 6)/o ~ N3(0, H), which is a distribution not
depending on the parameters. So (Y — §)/c is a pivot (a vector-valued pivot rather than a

real-valued pivot). But it is not a pivot for § alone because it involves o .

To get rid of o, we can try substituting the estimate S. Let U = (Y —6)/S. Thisisa
pivot because it can be writtenas U = [(Y" — 6)/0]/[S /o] in which (i) the numerator
(Y — &)/0 has a distribution, N3(0, H ) , that does not depend on the parameters, (ii) the
denominator S/o has a distribution, \/ X%‘ln— 4 /(4n — 4), that does not depend on the

parameters, and (iii) the numerator and denominator are independent. Fact (iii) follows from
Theorem 4.4.2(i) and the independence of the four samples.

Note that facts (i) and (ii) are not sufficient to establish that U is a pivot. In general, if X
and Y are two random variables whose distributions do not depend on the parameters, it is
still possible for the distribution of a function g(X,Y’) to depend on the parameters. This is
because the distribution of g(X,Y) depends on the Joint distribution of (X,Y’) and not just
on their marginal distributions. For example, suppose (X,Y) has a bivariate normal
distribution N3(0,0,1,1, p) as in section 3.6. Then X ~ N(0,1) and Y ~ N(0, 1), so their
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distributions do not depend on the parameter p. Consider g(X,Y) = XY . Its distribution
depends on the parameter because E(XY) = Cov(X,Y) = p.

Now we want to use U to construct a confidence region for §. We can express its
distribution in terms of a multivariate ¢ distribution, introduced in section 4.6.2. We have
\/n—/g(Y —6)/0 ~N3(0,G) where G = (n/2)H is a correlation matrix, that is, having all
its diagonal entries 1. All the off-diagonal entries of G are 1/2. According to section 4.6.2,
facts (i), (ii) and (111) imply that m U has a multivariate ¢ distribution Mt3(4n — 4,G).
For some values of p, m, G and «, tables are available that give critical values ¢ such that,
if T=(T,...,Tp) ~ Mty(m,G), then P{|T;| < c forall i=1,...,p} =1— . Let ¢ be
the critical value in our case, thatis, for p =3, m = 4n — 4, and G with all off-diagonal
entries 1/2. Then P{|\/n/2[(X; - X;) — (11 — pi)]/S|<cfori=1,2,3} =1-a.
This defines 3 intervals, the one for y; — p; having limits (X; — X;) £ ¢S+/2/n.

Numerical example. Suppose the four samples are of size n = 3 with sample means and

standard deviations as follows:
X, = 5635 X9 = 5753 X3 = 4527 X4 = 3442
S = 966 Sy = 432 S3 = 510 Sy = 356

Pooling the standard deviations from all four samples, we obtain S =
/(9662 + 4322 + 5102 + 3562)/4 = 614.

(A) Suppose we focus on the difference pj — o and use only the 6 observations from
samples 1 and 2. A 95%-confidence interval for j; — yy has limits

(5635 — 5753) + (2.776)(748) \. /2/3,thatis, ( — 1813, 1577) . See p. 32 above.
Its width is 3390.

(B) Suppose we continue to focus on the difference {41 — pe2 but now we use all 12
observations to estimate o. A 95%-confidence interval for 41 — o has limits

(5635 — 5753) & (2.306)(614)/2/3, that is, (—1274,1038). See p. 32 above. Its width is
2312. This interval is narrower for two reasons. First, the ¢ critical value is smaller, which is
due to the increase in degrees of freedom for estimating the error variance. Second, the
estimate of o is smaller, which is just by chance. The estimate of ¢ based on 8 observations

is better than the one based on 4 observations, but it could just as easily have been larger
rather than smaller.

(C) Now suppose we want intervals for all 6 pairwise differences and we want our joint

confidence in them to be at least 95%. Using the Bonferroni Inequality as on p. 32 above, the
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interval for p1 — g has limits (5635 — 5753) + (3.479)(614)/2/3, that is, ( - 1862,
1626) . Its width is 3488 . It makes sense that this interval is wider than the one in (B) where

our confidence is focused on one interval rather encompassing 6 intervals.

(D) Suppose we want intervals only for the 3 pairwise differences y; — p; for i = 2,3 .4,
and suppose we want our joint confidence in them to be at least 95%. Using the Bonferroni
Inequality as on p. 33 above, the interval for y; — py has limits

(5635 — 5753) + (3.016)(614)\/2/3, that is, (— 1630, 1394) . Its width is 3024. It makes
sense that this interval is narrower than the one in (C) where our confidence encompasses 6

intervals rather than 3 intervals.

(E) Now let us use the method of section 9.4.2. The multivariate ¢ distribution that is relevant
here is Mt3(8, G). The critical value for a = .05 can be found in a table referenced in
section 9.4.2; itis ¢ = 2.88. The interval for p; — py has limits

(5635 — 5753) + (2.88)(614)/2/3, that is, (— 1562, 1326). Its width is 2888, which is
narrower than in (D). So this method is an improvement over the more general Bonferroni

method, but it requires special tables. ||
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Notes on Likelihood Ratio Tests

(see Ch. 11 in Mukhopadhyay)

Introduction

Let x be a vector of observed data. As a probability model for the data, suppose we have

- assumed a family of pdf's or pmf's f(z;0) parameterized by 8 € © C R”. In section 8.3
we looked at the problem of testing a simple null hypothesis versus a simple alternative
hypothesis, that is, Hy : @ = @y versus H; : @ = 6,. Intuitively, the likelihood ratio

_ f(z;61)

— fl=z;60)

is a sensible test statistic. From the idea that f(z ;6) represents the likelihood of the
parameter @ if the data vector z is observed, it is natural to construct a test that rejects Hy iff
LR > k, where k is chosen to achieve the desired probability of Type I error. Our intuition is

confirmed by the Neyman-Pearson Lemma, which says that this test is the most powerful one

among all tests having the same level.

LR

More generally, suppose we want to test Hy : § € @ versus H; : 6 € ©;. The idea of the
likelihood ratio can be generalized by considering a “generalized likelihood ratio”

sup{f(z;6):0€6}
sup{f(z;0):0€6,} -

G‘GLR?’ —

(We have put “GLR” in quotation marks because shortly we will be modifying its definition.)
A natural test is constructed by rejecting Hy iff “GLR” > k for a suitable k. Itis a little
more convenient to change the definition of the generalized likelihood ratio (GLR), also called
the likelihood ratio test (LRT) statistic or simply the likelihood ratio (LR), to be

sup{f(z;0):0€6,}

GIR = A = sup{f(x;0):0e0} -

The LR test rejects Hy iff A < ¢ for a suitable c¢. This is essentially equivalent to
“GLR” > k. To see this, note that the level « is almost always chosen to be small, which
means that we reject Hp only when there is strong evidence against it. This means that we

will have k > 1, in which case sup{f(x;0):0 € ©;} = sup{f(z;0): 6 ¢ ©}, and hence
GLR = 1/“GLR”.

One-sample problems

Example. Suppose X;,..., X, arei.i.d. Normal(p, 02) where o} is known. Consider the
problem of testing Hy : . = po versus Hy : i # po. The LRT statistic is




’.

.

sup{f(z;im):ip=p}  f(z;m)
sup{f(z;u):—co<u<oo} = f(z ;@)

K we

where 7 is the MLE of . We know that /i = 7 (Example 7.2.6). As in the example on p.
16 above,

(1/ 27rcr§)ncxp[¥$gz(xi*uo)2]
(1/ \/Qs-mg) nexp [— 2—3%5 € —;’I)Q]
= |~ 50 { o~ 0)? - S -2} -

Wereject Ho iff A < c iff 3 (x; — po)? — 3 (z; — Z)2 > ¢’. This latter statistic can be re-
expressed in a nicer form by noting that

A =

(2 = p0)* = [(@:i = T) + (T - po))* = (z: — 7)* + 2(zs — T)(T — o) + (T — ps0)?
and hence

(@i — po)® = 3(zi —T) + 0+ (T — pug)? .
The 0 term comes from the fact that ) (z; — ) = 0. So the test rejects Hy iff
(T — po)? > ¢ iff |T— po| > /I /n=c". We prefer to standardize the distribution of the
test statistic. Since X ~ Normal(y, 03 /n), we have (X — p)/(co/ v/n) ~ Normal(0, 1) .

Under Ho, (X — 10)/(00/ v/n) ~ Normal(0,1) . Thus we obtain what seems to be the most
implementable and interpretable form of the LR test for this testing problem:

Ty
oo/ \/n
Example. Suppose X1,..., X, areiid. Normal(y, 02) where i and o? are both unknown
parameters. Letustest Hy: p = pg versus Hy : p £ 1o -

reject Hy  iff > Zasa o ||

e The LRT statistic is

_ _sup{f(zip,0®) i p=p,0®>0}  f(z;m,5
— sup{f(z;ip,0%) i —c0<p<o0,02>0} T f(z;f,57)

where (2,6%) = (T, 2 (z; — 7)?) is the MLE of (1, 0?) (Example 7.2.7) in the full
model, and & is the MLE of o2 in the hypothesized submodel in which p= iy.

) -
* To obtain &, we want to maximize

f(z; po,0?) = (I/W)nexp[— %72(9::- —po)z] :

or, equivalently,

1
log f(x; po,0?) = — %logQw — %logd2 — 5,2 2.(xi — po)®
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Its derivative is

gff;—z—)iogf(m; po,0%) = — 503 + 5“(;%2—)52(9:5 SOk

= 307 (6= 7%)

where G5 = %Z(st:1 — 110)%. The derivative is positive for o? < &, is 0 for 0% = &, and
is negative for o? > 2. This implies that a global maximum of log f(z; 0, o?) is

attained at 02 = G5 .
e Now
= f(:l?;ﬁ,az) o (1/\/27"82)’153‘[3[—?Z(mi_f)z]

A e e o B . =2 _ D
Note that — 252 Y(zi—po)*= — 5 and 53 >.(zi —T)* = — 5. Therefore

2 =B
e The LR test rejects Hy iff A < ¢, thatis, iff %3 = _ZZ(%:% < ¢’. This test statistic
Q0 1

can be interpreted as follows. The z;’s are centered around Z, which tends to be near p. If
@ # po, then the z;’s will tend not to be centered around pi, and so the squared deviations
(z; — 110)? will tend to be larger than the squared deviations (z; — T)?, which makes the test
statistic small. If the test statistic is significantly small, this supports the conclusion that

1 # o . But the distribution of the test statistic 3 (X; — X)? / So(Xi — 10)? is not well

known.

e We prefer a test statistic whose the distribution is “standard”. Recall

Sz - m)? = (i — ) +n(F — po)® -
So

2(zi—T)* S (zi—z) 1

(i~ ~ L(@m—zP+nE-mF |4 PE—H0)?
=)
2. (z;~7)
Therefore an equivalent expression for the rejection region is
n(E_lJ'ﬂ)z 1"
Y (- ~ €

or
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n(f—ﬂo)z — (_j_ﬂﬂ)z 1
I v 2fn €
a1 (%~ E)
or
T—Mo
s/l > b

This is the usual ¢ test. For alevel « test we take b = tinv(1 — %,n -1. |

In general, suppose we have a data vector = which is assumed to have been randomly
generated from a distribution with pdf or pmf f(x ;) parameterized by an unknown
parameter 8§ € © C R?. Suppose we want to test Hy : 8 € O versus Hy : 6 € ©;. The
steps to perform an LR test are the following.

(a) Find the MLE @ in the full model parameterized by 8 € ©.
(b) Find the MLE 8, in the hypothesized submodel parameterized by 0 € ©,.
(c) Form the LRT statistic A = f(z;80)/f(z;8).

(d) Manipulate the inequality A < ¢ defining the rejection region to obtain an equivalent
expression in terms of a statistic W (perhaps (1) W > k or (i1) W < k or (iii) W < k; or
W > ks or (iv) ki < W < ky) where, as far as possible, W is interpretable and either its

distribution under Hy is “standard” or its quantiles are relatively easy to calculate.

Example. Suppose Xj,..., X, arei.i.d. Normal(y,o?) where p and o2 are both unknown

parameters. Let us test Hy : 02 = o3 versus Hj : 02 # o3.

(a) We know that the MLEs in the full model are i = 7 and 5t = %Z(ﬂh —7)? (Example
1.2.7).

(b) In the hypothesized submodel, 62 = o3 and the MLE of  is fi, that maximizes
I N 2\" _ 1 gt
flx; p,0?) = (1/ 27rc70) exp[ 5;3‘2(3& u)] : (E?(M»F&’ 7.2.6)
or, equivalently,

1
log f(z; pu,08) = — %log?nrag - EZ(@ —w)?.

Its derivative is
o ) N 1 L .
sploe f(@: mod) = = 5ry 32— w)(— 1)

= 2@ -4
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The derivative is positive for u <T,is 0 for p = T, and is negative for x > 7. This
implies that a global maximum of log f(x; p,03) is attained at y = Z. Therefore, fiy = Z .
1 2\ expl — LS. 7 12
foitned) _ (MV2R) |- ]

© A= T 07 (1/ V270" "exp| - 5L (o~ ]

2

bl

Since fi=fip =7 and Y _(z; — 7))’ =n5

(@) [(_ 1, L 7
An(o_ﬂ) cxp[( 203+232)na

g—g)%exp[;}# %(1 — %)] .

2
(d) Note thatif 0 <a <b and p > 0, then a? < bP. Therefore, A < ¢ iff An < ¢’ iff
g(T) < ¢’ where T = 6%/0} and g(t) = tel ¢,

JE

TN

e Let us investigate the behavior of g(t) for t > 0. Its derivative is ¢/(t) = el =t — tel ¢

= el ~t(1 — t), which is positive for ¢ < 1,is 0 for £ = 1, and is negatrive for t > 1.
Thus, as ¢ increases from 0 to 1, g(t) increases from g(0) =0 to g(1) = 1, and as t
increases from 1 to oo, g(t) decreases from g(1) =1 to g(co) = 0. Drawing a picture of
the graph of this function, we see that g(T") < ¢’ iff T" < b; or T' > by for b; and b

satisfying g(b1) = g(b2) . Sowecanuse T = & /0% = %E(mt —T)?/0} as our test statistic.

K=

ol S A

y £

= |eemaa

:
b, L
e To get a “standard” distribution, recall that (n — 1)5?/0? ~ x%(n — 1). We have
(n—1)8? =3 (X; — X)?,s0 W = nT = 3(X; — X)?/o2 can be used for the test
statistic. Its distribution under Hy is x?(n — 1). The LR test rejects Ho iff W < nb; or
W > nbs .

e Rather than worry about the condition g(b;) = g(b;) , Mukhopadhyay drops this condition
and instead takes the rejection region to be defined by W < k; or W > k, where k; =
chi2inv(ja,n — 1) and k; = chi2inv(l — la,n — 1). We can call this the equal-tailed
modification of the LR test. ||
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Two-sample problems

Example. Suppose Xi1,..., X1y, are an i.i.d. sample from a Normal(y11, 0®) population and
Xo1, ..., Xon, are an i.i.d. sample from a Normal (2, o) population, where ), p1 and o?
are unknown parameters. Note that the two populations are assumed to have a common
variance. The two samples are assumed to be independently selected. Let us do an LR test of

Hg : p1 = po versus Hy : py # po.
(a) First we find the MLEs in the full model. The joint pdfis f(z1; p1,0%) f(z2; pt2,0%),
so the log-likelihood is

log L = log f(z1; p1,0°) +log f(za; pa,0?) .

Now %logL = 6i,u110g f(z1; p1,0?%), which is the same as if only the first sample had

been observed. Therefore, as in Example 7.2.7, fi; = 7, . Similarly, i, = To. Next we can

plug these into the log-likelihood and maximize the resulting function of 2. Its derivative is
0 - ol -
a(o7yloe f(@1: Z1,0%) + Frozylog f(ws; To,0%)

n 1 - n 1 -
= s 4 im Py — ) - 3z + 5,7 0. (Ti — T2)?

nlz-;lz (82 _ 02)

where 6% =

_ _ ~2 ny+no—2
41y [Z(mli = 11’31)2 + 2(3721‘ = 272)2] . Note that o° = ﬁs% where
s% is the pooled estimator of variance (4.5.7). From the derivative we see that 5° is the MLE

of 2.

(b) Next we find the MLEs i, and &2 under the null hypothesis. Under the null hypothesis
that y1; = po, the two samples together constitute a single sample of size n; + ny froma
Normal(y , 0?) population, where g is the common value of p; and pp. So iy = T, which

can be expressed as T = (Z Ty + E 172.5)/(711 + ’n,g) = (nl_jl + ﬂgfg)/(’n.l + ng) . And
~ 1

58 = s |2 (@1 — )7 + Dlen — 7))

_ _f(=1;%63) f(=2,352)
© A= teim:8) fme 78

- (1/ 27r3%)”1+nzexp[—%{Z($1i—i)2+2($2e~?n)2}]
B (1/\/27{32)n1+"2€)(p[A2—a1:2"{Z(Ili_§1)2+z($2i_52}2}:| .
i )

exp [— %5 {(nl +719 )82ﬂ

Q)

S
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~2

(d) The LR test rejects Hy iff A < ¢, thatis, iff % e,
0

Let us re-express o, in terms of cal

Recall that 3 (z; — a)? = Y (z; — Z)* + n(Z — a)*. Hence

2 (& )2 = Y (z1i — T1)? + (T — T)°
and

S (22 — 7)? = Y (22 — To)? + no(T2 — T)%,
$0

(n1 + n9) 3(2) = Z(:Cli =4 5)2 + Z(:Ezi = 5)2
= Z(:Ch' — 51)2 -+ 2(3321' — 52)2 + nl(fl - 5)2 -+ ‘ng(fg — 5)2

= (e —T) + N(wa — o) + (T, — T)?

n1+ng
— =2 N2 (= =2
= (np1+mng)d° + 1+ (:Itl Tg)° .
The last equality uses the equations z; — T = 7117-]’27’1,2 (T1 —T2) and Ty — T =
ﬂ::ng (T3 — 7)) , which follow from the expression T = (n1Z) + noTa)/(n1 + na).
. o T G
The LR test rejects Hy iff =z = ¢ iff =% > ¢”, and we now see that
0 e}
o ~2 (n1+ng) 32+ L2 (2 — T, )?
gy (matm)oy 1712 ny+ngy 1
ot T (mAng)dt (1 +mp)6°
nlnz - -
ny+ny (5131"‘332)2

(ny+n2—2)s}

= =2 e T1—D
So the LR test ['Cjects HG ‘ff ($13+2) > CHI ]ff lmlsP 1:21 > CHH lff I:Ell 33211 > b.
P

This is the usual ¢ statistic for comparing two samples.
Let b= tinv(l — %,nl +ny—2). |

Example. Suppose Xiy, ..., X1y, are an i.i.d. sample from a Normal(p, o?) population and
Xoa1, ..., Xop, are an i.i.d. sample from a Normal(yy, 02) population, where py, po, o3 and

o3 are unknown parameters. This differs from the preceding example in that the variances of
the two populations may be different. The two samples are assumed to be independently

selected. Letus do an LR test of Hg : 11 = po versus Hy @ gy # pa.
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(a) In the full model we have two independent samples with no parameters in common, so the
MLEs can be obtained separately from the two samples. Thus

i, =%, 0;= ;11'1‘ (21— %1)?, =72, Gp= %Z(Ezi — )P,
(b) When we try to obtain the MLEs under Hy, we find that there are no explicit formulas for
them. Given the observed values of the data, x = (x1, z2) , one can form the log-likelihood
function log f(z; g, 0%, 03) under Hy and use numerical methods to maximize this function
over the three variables 1, 0% and o2 . (See the optimization toolbox in Matlab.) One reason
that there are no explicit formulas for the MLEs in this model is that it is not a full-rank
exponential family. It is an exponential family, but when the pdf is written as in (3.8.4), there
are 4 “canonical” statistics R;(x) but there are 3 parameters. The well-behaved exponential
families are those having full rank, i.e., those for which the number of canonical statistics is
the same as the number of parameters.

(c) The generalized likelihood ratio is
A = @13 ,h) f(@2 i ,T5)
f(1;%1,87) (=2 1%2,57)

where, as mentioned in (b), the values of fi,, 73, and &5, must be obtained by numerical
methods. We should reject Hg if A is significantly small, but to judge significance we need to
know, at least approximately, the distribution of A under Hy. For large sample sizes n; and

ny, this distribution can be approximated. We will return to this problem later. ||

Example. As in the preceding example, suppose we have two independent samples, one i.i.d.
sample of size n; from a Normal(y;, 0?) population and another i.i.d. sample of size ny from

a Normal(us, o) population. Let us do an LR testof Hy : 02 = ¢ versus H; : 0% # o%.
(a) The MLEs in the full model are given in the preceding example.

(b) Under Hy we have two independent samples from normal populations having a common
variance. This is the full model in the example on p. 41 above. The MLEs are

—~ = ~ — ~2 n1+ng—-2 2
=T =%y, Og=
1o 1, Hag 2, Op nitng °P

where s is the pooled estimate of variance.

AT ATV
7 10.2

© A= = ?lﬂ.%

0

(d) We can express the likelihood ratio as A = g(T") where T' = s2/s3 and g(t) =

kt™ /((n1 — 1)t + (ng — 1))™*™ where k is a positive constant not involving ¢ (it is some
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function of n; and n2). To determine the shape of the function g(t), we take its derivative.
It is easier to take the derivative of log g(t) , and it has the same sign as the derivative of g(t) .
We find that the shape of the function is the same as in the picture on p. 40; that is, the
function increases to a unique maximum and then decreases. Therefore, A < ¢ iff T < a or
T > b for suitable a and b satisfying g(a) = g(b).

Recall from Example 4.5.3 that (Sf/of)/(S%/og) ~ F(ny - 1,n2 —1). Under Hy, 0? = o2
andso T'= S7/SF ~ F(ny —1,ns — 1). As before, we will ignore the condition g(a) = g(b)
and use the equal-tailed modification of the LRT. Let a = finv(ia,n; -1,ny—1) and

b=Tfinv(l— ja,n - 1,na—1). |

Bivariate data

Example. Suppose (X1, Xo1),...,(Xin, Xo,) are an i.i.d. sample from a bivariate normal
distribution Ny(yz1, pta, 02, ag, p) . Here p denotes the correlation coefficient p =
Cov(Xi1, Xiz)/o102. Letustest Ho: g1 = po versus Hy : g # po. It turns out that the
MLESs under Hj are not explicit and would need to be calculated by numerical methods. So

the LR test is difficult to perform in this example.

An approach that leads to a nicer test is to reduce the data to the differences Y; = X;; — Xo;.
The vector Y = (Y1, ...,Y,) is not a sufficient statistic; we are restricting our attentionto Y
only for convenience. The differences Y,...,Y; are ani.i.d. sample froma N(u; — po, 02)
population. (We could express o2 as a function of 02, o2 and p but this is not necessary for
deriving our test.) Based on Y, the LR test of Hg : gy — pa = 0 versus Hy : 1 — 19 # 0 is

the one-sample t test that rejects Ho iff [ Y]/(Sy/y/n) > tinv(ia,n-1). ||

Example. Consider an i.i.d. sample from a bivariate normal distribution as in the preceding
example. Letus test Hy : 0 = 02 versus H; : 07 # o2. It turns out that the MLEs under Hy
are difficult to derive directly, but we can use the following trick. Transform the pairs

(Xi1, Xio) to pairs (Yi1,Yis) where Yi; = Xq; + Xo; and Yio = X1; — Xo;. This is a one-
to-one transformation and so the n transformed pairs constitute a sufficient statistic. They are
an i.i.d. sample from a bivariate normal distribution No(u3, u3, 072, 032, p*) where

p* = Cov(Yi1, Yp)/ojo3 . (Itis not necessary to obtain formulas for uf, u3, 072 and 032)
Note that Cov (Y1, Yi2) = Cov(Xy; + Xoi, X1 — X2:) = Cov(Xy;, X15) — Cov(Xy;, X o))
+ Cov(X2i, X1;) — Cov(Xa;, Xo;) = oF — 0. Therefore, 02 = o iff p* = 0. What we
want now is the LR test for Hp : p* = 0 versus H; : p* # 0. We address this in the next
example. ||
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Example. Consider an i.i.d. sample from a bivariate normal distribution Ng (g1, p15, g e i)
as in the preceding two examples. Let us do an LR test of Hg : p = 0 versus Hj : p£ 0.
(a) It can be shown that the MLEs in the full model are

fi, = T1, 0% = %Z(Eu —T1)%, fy= Ty, G3= %2(372:' B3},

and p = %Z(ﬂfu —Tp) (@ — 52)/3132-

Note that the MLEs of p, 2, af and O’% are the same as they are in the case of independent

samples (when p = 0).

(b) Under Hy we have two independent samples and the MLEs are the same as in (a).

@r=-=(Yi-7)"

(d) A <ciff |[p| > k. This expression for the test is interpretable, but for the test to be
implementable we need to know the distribution of % under Hy, or the distribution of some

one-to-one function of 5. Fisher discovered that 7' = \/n -2 / 1-7° hasa t(n-2)
distribution under Ho. So the LR test rejects Ho iff | T| > tinv(ie,n-2). |

LR tests of one-sided alternatives

Example. Suppose Xj,..., X, areiid. Normal(y, o2) where o2 is known. Consider the
problem of testing Hg : p1 < o versus Hy : 2 > pg. Letus do an LR test. The LRT statistic
is A= f(z; fiy)/f(z; i) where fi is the MLE of y in the full model and Iiy is the MLE of
# under Hy. We know that i = Z, but we need to figure out what 7 is.

In deriving the MLE in the full model, one uses the derivative
g s
aloeflin) = H(@-p) .

From the sign of the derivative we see that the log-likelihood is increasing for ;1 < T, attains a
global maximum at ;2 = 7, and decreases for p>T. Under Hy, g < pg. If T < pg, then
the maximum of log f (z; i) under Hy occurs at u = T . However, if T > Lo, then

log f(z; ) is increasing for all g < j19, which implies that the maximum occurs at 1= .
Thus we have

= {ZE if Z < o
My = o -
po if T > py

Now
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1 if =<y

A= {f(x; wo)/f(z;T) if T> o
We reject Hp iff A < c. Since the values of A are always between 0 and 1, we would have
¢ < 1 and we would never reject if T < pg. (This is sensible because T < yg is entirely
consistent with the null hypothesis that @ < pg.) So, A < ¢ iff T > g and
f(z; wo)/ f(z;T) < c. Onp.37 above, when deriving the LRT for a two-sided alternative,
we saw that the likelihood ratio is less than ¢ iff |Z — po| > b for a suitable b. With the
added condition T > pg, we see that A < ¢ iff T — po > b. This is equivalent to rejecting
H, iff the z statistic (Z — p0)/(c0/+/n) is significantly large. Noting that the z statistic is a
strictly increasing function of ) z;, we see that the LR test is the same as the UMP test we
derived on p. 16 above. ||

Example. Suppose Xi,..., X, areii.d. Normal(u,o?) where ;1 and o? are both unknown
parameters. Consider the problem of testing Hy : p2 < 19 versus Hy : > po. Ina way
similar to the preceding example, it can be shown that the LR test rejects Hg iff T" >

tinv(l — a,n — 1) where T = (X — p9)/(S/+/n) . This is the usual one-sided ¢ test. ||
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Notes on Large-Sample Inference

(see Ch. 12 in Mukhopadhyay)

Large-sample distribution of an MLE

Suppose X1, ..., Xn are1id. with pmf or pdf f(z;80) where 8 is a real-valued parameter.

We will assume some “regularity” conditions:
RC1. f(z;6) has the same support for all 6.
RC2. f(z;6) is differentiable.
RC3. Other technical conditions concerning derivatives and integrals.

All the common pdf’s that satisfy RC1 also satisfy RC2 and RC3. Note that the pdf of
Uniform(0, #) does not satisfy RC1.

The MLE 8, by definition, maximizes the joint pdf f(z;6) =[]\, f(z:;0). Equivalently,
9 maximizes the log-likdihood log f(x ;8) = S_r_,log f(z;;6) . (In order for the log-
likelihood to be well-defined, we need RC1.) The derivative of a differentable functionis 0 at
a maximum, so 9 satisfies the likelihood equation:

3

@Iogf(:r;(?) = .
A solution of the likelihood equation is usually an MLE, but to be sure, we must check that it
is a global maximum.
Notation. We will be studying samples as the sample size increases, and so we should keep
track of . Letus write X = X, = (Xi,..., Xs) and 8 =0, = 0,(X1,..., X»).

Theorem. (12.2.3) Assume conditions RC1, RC2, RC3. Then the MLE 6, is a consistent
estimator of 4.

i ~ P . 5
This means that 6,, — @ as n — oo that is, forall € > 0, Pg{|6, — 6] < €} as n — oco. In
words, for large sample sizes, the MLE 0, is close to 8 with high probability. The proof of
this theorem is based on the WLLN (Theorem 5.2.1).

Theorem. (12.2.4) Assume conditions RC1, RC2, RC3. Then the MLE @n has an
asymptotic normal distribution. Specifically, as n — oo,
an—g E

VOB

where 7;(6) is the Fisher information in a single observation.
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This theorem tells us that, for large sample sizes,

—~

1
On apg;ox N(8, nZ,(6) ).
The proof of this theorem is based on the CLT (Theorem 5.3.4).
Recall the Cramer-Rao Inequality in Theorem 7.5.1. Consider the case 7(8) = 6, so that
7(8) = 1. Using Definition 6.4.1, the theorem says that, under the conditions RC1, RC2,
RC3, for a fixed sample size 1, the Cramer-Rao Lower Bound 1/[nZ;(6)] is the smallest
possible variance among all unbiased estimators of . This is the same variance as the
asymptotic variance of the MLE. It can shown that 1/[nZ;(#)] is the smallest possible
variance among all consistent asymptotically normal estimators of §. An estimator that has

the smallest possible variance is said to be efficient. So, under the regularity conditions, we

can say that the MLE is asymptotically efficient.

We should recall the definition of Fisher information from section 6.4. Consider a data vector

x with joint pmf or pdf f(z;6), where 6 is a real-valued parameter. Assume conditions
RC1, RC2, RC3. We define

a
19) = Eo[{ z5log f(X;0)}?] .
Two other ways to calculate it are:

Z(9) = Vara[%logf(X;ﬂ)] )

32

I(0) = — Eo|5zlog f(X;0)] .
Suppose X = (X1,...,X,) wherethe X;’s arei.i.d. Then %log X eH) =
¥ %log f(X:;6), and so, keeping track of the sample size by a subscript, we have
T40) = Varg[%log f(X;H)] = nVarg[-a%log f(Xy; 0)] = nZy(6).
Example. Suppose Xj,...,X, arei.i.d. Normal(y, c2) where o7 is known. One finds that
for a single =, é%log f(z;p) = og%(z — 1) . Therefore, Z;(p) = E#[{UO_Z(X - ,u,)}z] —
054Ep[(X - ,u)z] = 0g%0% = 052 Alternatively, T;(p) = Var”[ag‘z(X — ,u)] =

s _ _ H? _ =
The two theorems above imply that, as n — oo,
.. P
Hp — H

and



—e L N(0,1) .
a2/n
We know that ji = 7, the sample mean, and so these two results are instances of the WLLN

and the CLT. For a sample from a normal population, the random variable (j{_ - )/ 03 /n

has a standard normal distribution exactly for all n, not only in the limit. ||

Example. Suppose Xi,..., X, arei.i.d. Bernoulli(§), 0 < 6 < 1. The pmfis
f(z;6) = 6°(1 — §)17=. We find that

J . . _z l-x T 1
aglogf(z:0) = =5~ 979 = grig) ~ 19 -
a _ 1
7,(0) = Var|z5log f(X;6)] = Ti0)
By (12.2.4), for large n,
6(1-0)
*) ™ approx (0’ T) :

We know that 6, = X = the sample mean = the sample proportion, § = the population
mean = the population proportion, and Var(6,,) = Var(X) = (1 — 8)/n. So (*) could also
be concluded directly from the CLT.

Two uses of (*) are given next.

(A) To construct an approximate 95%-confidence interval for 8, re-express (*) as
0,—0

Tﬁa(l—e) oo N(0,1) .

This is an approximate pivot for #. Now, for large n,

-
8(1-6)

n

Po{ — 1.96 < <1.96} = 0.95 .

Unfortunately, we cannot manipulate these inequalities to get nice confidence limits for 6 .
This is because @ appears not only in the numerator of the approximate pivot but also in the
denominator. To get around this problem, we substitute §,, for @ in the denominator. Using
the re-expression of (*) and the fact that @n is a consistent estimator of # and applying
Theorem 5.2.5 and Slutsky's Theorem 5.3.3, we can show that

6,6

- — ~

; 6n(1—6n) aPProx

n

N(0,1) .

This is another approximate pivot for 8. For large n,



By manipulating these inequalities we obtain an approximate 95%-confidence interval for @ :

89— 1.96\/9£~1;;—@ < 0 < 8+1.964/ 9(1,”‘9) .

(B) Todoatestof Hp: 8 = 8y versus H; : § # 6, with level approximately 0.05,
reject Hy iff

Py

6o (1~6p)
m

> 1.96 .

The critical value 1.96 is appropriate in so far as the test statistic has approximately a N(0, 1)
distribution under Hp. Note that in forming the test statistic, we have taken full advantage of
the null hypothesis by putting y in the denominator rather than 8. How close the actual
level is to 0.05 depends on the sample size n and also on the population proportion 6 . I

Example. Suppose X1,..., X, areiid. with pdf f(z; B} = 0e=9% for ¢ > 0 for some
6 > 0. (This is the Exponential distribution parameterized by a rate parameter.) We find that

o)
aglog f(x;8) = - = 3T,

T,(0) = Var(g — X) = Var(X) = 2 .

8lf—

n n —~
The MLE is the solution of 3 &7log f(z:56) = 2 — -z, = 0, thatis, § =
=1 i=1
By (12.2.4), for large n,

® 7~ NoZy.

approx 'n

The approximation (*) could also be concluded from the CLT and the Mann-Wald Theorem

5.3.5 for g(Z) = 1/Z. As in the preceding example, one can use (*) to obtain approximate
confidence intervals and tests for 6. ||

In this example the CLT implies that X has approximately a normal distribution for large n,
and the Mann-Wald Theorem implies that 1 /X also has approximately a normal distribution
forlarge n. How can this be? Although a linear function of a normal random variable is

normal, a nonlinear function of a normal random variable is nonnormal. However, in a small
interval, a differentiable function is approximately linear. That is, a differentiable function is

well approximated in a small neighborhood of a point by the tangent line at that point. For
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large n, the variance of X is small and so with high probability its values occur in a small

interval around its mean.
Example. Suppose X1, ..., X, are i.id. Gamma(a,1), @ > 0. The pdfis

flz;a) = ﬁla—)ma’le"m for w0 ,
log f(z;a) = —logl'(a)+ (a—1)logz —x ,

%log flz;a) = —¢(a)+logz

where ¥(a) = 3% log I'(«) , the digamma function. A table of this function is available, for

example, in Abramowitz & Stegun (1974).
n n
The MLE is the solution of 5 (.%log f(zi;0) = —np(a) + Y logz; = 0. Thatis,
=1 =1

n
Y@) = —T%Elog z; . There is no explicit solution for &. For a given data set, the value of &
i=1

must be calculated by numerical methods. Even though there is no explicit formula for it, we

can approximate its distribution by (12.2.4) if n is large.
The Fisher information in a single observation is
Ii(a) = Var[ - ¢(a) + log X] = Var[log X] = 7.
Alternatively,
Tile) = ~Elzlog [(X;0)] = —E[- /()] = #'(a),
the trigamma function. A table of this function is available in Abramowitz & Stegun.
By (12.2.4), for large n,

" & 1
O & agpton N ity -

(A) To calculate an approximate 95%-confidence interval for «, first use a digamma table to

calculate the MLE &. Then use a tripamma table to obtain /(&) . The interval has limits

~ / 1
C! j: 1.96 n¢’(a) .
(B) Totest Hy : @ = o versus Hj : @ # aq, reject Hy iff

&—an
1

n'q'; (00)

>196. |
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The same sort of approach used in the preceding three examples to obtain approximate
confidence intervals and tests can be followied whenever we have an estimator that has
approximately a normal distribution with the parameter of interest as the mean. Three ways to
establish that an estimator has approximately a normal distribution are: (1) the CLT, (2) the
Mann-Wald Theorem, and (3) the asymptotic MLE result (12.2.4).

Note that not all estimators have approximately a normal distribution, even for large n. For
example, given an i.i.d. sample from a Uniform(0, #) distribution, the MLE of 8 is the sample

maximum X ), which does not have approximately a normal distribution.

Example. Suppose Xii,..., X1, areani.id.sample from a Bernoulli(6;) population and
Xo1, ..., Xon, are an iid. sample from a Bernoulli(f,) population. The two samples are

assumed to have been selected independently of one another.

(A) Find an approximate 95%-confidence interval for ) — ;. The MLEs of 8, and 6, are
the samples proportions 6, = X; and 0y = X,. By the CLT,

?1 B N(Ql,ﬂ%) and 3’2 ikt N(92 M) .

approx approx ’ o

The two samples are independent, so

0 — 0y o~ N(Gl — 0,, Cilm ) + 92(1_82)) :

approx ] 9

We can substitute consistent estimators of ; and 6, into the variance. (This is justified by
Slutsky's Thorem and Theorem 5.2.5.) Thus

- 0,(1-9 0,(1-0
01 —6y ~ N(Gl—gg, 1(n1 1)—1- 2( 2)) ;

approx 9

An approximate 95%-confidence interval for 6; — 6, has limits

9, —@211.96\/91(:81) 4 Soll=ty)

ng

The confidence coefficient is approximately 0.95 if n; and n, are large.
(B) Test Hy : 6; = 0, versus Hy : 0, # 85 at level approximately .05.

In calculating the test statistic it is a good idea to take full advantage of the null hypothesis.
Thus, when estimating the SE of 8; — 8, let us suppose ¢; = @3 = (say) @, so that the

approximate SE of §; — 8 is \/9(1;6) + 9(};6) = \/6‘(1 = 9)(%1 + ;11—2) . Under Hyg

the MLE of 6 is 8, = 7 — %ﬁz . We reject Hy iff
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6,6

—td———— [ > 1.96 .
y/ Bo1=00) (5= +7-)

The level of the test is approximately 0.05 if n; and n, are large. ||

Mukhopadhyay considers n > 30 to be “large”.

Transformations of the MLE

Example. Suppose Xi, ..., X, areii.d. Bernoulli(#) for some 0 < # < 1. By result
(12.2.4) (or by the CLT), for large n, the MLE =X is approximately distributed as

N(o, 20=0)

~ Yis
approx n

By the Mann-Wald Theorem 5.3.5, for any differentiable function g(#) that is strictly
increasing on (0, 1),

90) 500 N(9(0), {9/ (0))2 222

)-

Therefore, for large n, an approximate 95%-confidence interval for g(#) is given by

- . ] 6(1-8 - ~ [0(1-8
9@ - 1969 @ L7 < 4(0) < 90 + 196 ¢ B)y) L)
and so an approximate 95%-confidence interval for @ is given by
~ ~ [ 6(1-9 ” ~ [B(1-8
-l(g( )—1.96gf(9)\/ﬂ(1f‘9) <6< g—l(g( ) +1.964'(8)y/ L& )) .

For example, for g(6) = 62, we get the interval

\/9 — 1.96(20)1/ 9(1 =) <9<\/9 +1.96(28) 9(1 ) |

For very large n, all such intervals, for various choices of g(8), should be approximately

valid in the sense of having a true confidence coefficient that is approximately equal to the

nominal value 95%. But for sample sizes n that are only moderately large, some intervals
will be more valid than others. And among those that are approximately valid, some intervals
will be more precise (narrower) than others. Which choice of g(0) is best? From the
standpoint of simplicity, g(f) = 6 is preferred, but in some cases (depending on the value of

the true € and the value of n), other choices may give higher validity or higher precision.

A transformation that Mukhopadhyay introduces is g(f) = arcsin( \/5) . Note, however, that

the motivation for this transformation is not necessarily to obtain confidence intervals that are




52 .

—~

more valid or more precise, but rather to stabilize the variance of g(6) so that it is
approximately the same for all 6. This property is desirable when doing inference in an
analysis-of-variance setting. By the Mann-Wald Theorem,

. ) ] 1

arcsin( \/E) silpRo N(arcsin(1/8), g b
This leads to the following approximate 95%-confidence interval for 6:

sin’ (arcsiﬂ(\/ﬁ) = 1-96\/ﬁ) <0< sin2(arcsin(\/?)+ 1.96«./3%) o
Suppose

a
n apg;ox N(&, ?)
and suppose g(t) is a strictly increasing differentiable function. By the Mann-Wald Theorem,
2
9(Tn) apnrox N(9(9), (¢ 0)312%) .

If the variance of T}, depends on 8 (i.., % = 02(8) ), one can try to stabilize the variance by
choosing g(#) so that {¢'(8)}?0%(f) = c?, a constant. Forsucha g(f),

9(Ta) .~ N(g(6), <) .

approx

[

We want ¢'(0) = c/o(6), or
90) = | LR
Example. Consider the preceding example of a random sample from a Bernoulli population.

We know that

6(1—6)
approx (" n )

Here we have o%(8) = 6(1 — 6), so a variance-stabilizing transformation is
9(0) = fmdﬂ = 2carcsin(1/0) .

The integral may be found in a table of integrals or at the web site integrals.com. We may as

welllet ¢ = 1, so that () = arcsin(1/6). As noted above, the large-sample variance of

arcsin(ﬁ) is c?/n=1/4n. ||

Example. Suppose X;,..., X, areii.d. Poisson(A) for some A > 0. The MLE of X is

A=X (Example 7.2.10). By the CLT (or result (12.2.4)), for large n, the MLE is
approximately distributed as
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—~

ap';.)\lfox
Recall that Var(X;) = A. The variance-stabilizing transformation is

g(A) = IVCKd/\ = 2¢v/\ .

We may as well let ¢ = 3 so that g(A) = VA. For large n we have

VX s NV ).

approx
This is a useful transformation when doing analysis of variance on Poisson counts.

This transformation also improves the normal approximation, but it has been found that the

2
transformation A* gives an even better normal approximation. By using the Mann-Wald
Theorem, we find that

ind

1
N(AZ, 428

3
' On

A

ap';)\;ox

Thus we have the following approximate 95%-confidence intervals for \:

oo

() X+1.96

2
) [\/}_Yi 1.96,/ L ]

1 .3
2 33 ]2
3 4A
3) [)\ +1.96 O ]

In a simulation of these intervals for n = 30 and A = 1, the coverage probability of
interval (3) was closest to the nominal 95%.

Example. Suppose (X131, X21),...,(X1n, Xon) are ii.d. from a bivariate normal distribution,
| No(p1, p12, 0%, 03, p) where p is the population correlation coefficient. The MLE of p is
p= %Z(Xli — X1)(Xoi — X3)/6165. When p = 0, Fisher found that
V(n—2) p/\/1— ',52 ~t(n—1). When p # 0, the distribution of 7 is more complicated.

Fisher found that, for large n,

(1-p? }2)

p apg;ox N(p1

An approximate 95%-confidence interval for p is

y
() 7+ 1.9674”— )
n
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Now try a variance-stabilizing transformation.

1

Let ¢ =2 and let 7 denote log((1 + p)/(1 — p)), so that p = (e — 1)/(e” + 1).

D 1
log(%’p‘?) apg;ox N(log("l'i——g), %) ’

This yields an approximate 95%-confidence interval for p,
@ p<p<pu

where pi(e™ — 1)/(e™ +1), py = (e™ —1)/(e™ + 1),

=7 — 1.96@, TU=T+ 1.96\/%.

In a simulation of these intervals for n = 30 and p = 0.5, the coverage probability of

interval (2) was closer to the nominal 95%.



Numerical example of binomial regression

The following data is from The Statistical Sleuth, p. 602.

Atlocation ¢ (i =1,...,7), m; moths of a type common in Liverpool were placed on a
tree. After 24 hours the experimenters counted the number y; of moths that had been
taken by predators. The distance in kilometers of each location from Liverpool is also
listed.

Location T m Y
1 0.0 56 14
2 7.2 80 20
3 24.1 52 22
4 302 60 16
5 364 60 23
6 415 84 40
7 512 92 39

MLEs: a= —11290, 8

I
©
o
p—t
co
[
o

7=0.3505, & = log(*g—) — 05775
(A) LR test

—2logA =11.14 > 3.84

Reject 8 =0 atlevel .05.

(B) Wald test

The information matrix is 7 = [108'927 3341'23]

3341.23 133867

7-1_ 0.03917 — 0.009776
~ | —0.009776 0.00003187

Var(B) &~ 0.00003187, est.SE(B) = 1/0.00003187 = 0.005645

_ B _ 001850 _
W= estSE(B)  0.005645 — 3.277 > 1.96

Reject 3 =0 atlevel .05.



