Overview of Nonparametric Statistics

February 7, 2016

Statisticool.com

Motivation for This Talk

- We already use nonparametric methods in sampling, exploratory data analysis, outlier detection, imputation, variance estimation, simulation, goodness of fit tests, ...
- However, nonparametric statistics itself is rarely discussed

What to Get Out of This Talk

- An overview of nonparametric statistics
- Learn advantages and disadvantages
- Learn a variety of SAS procedures
- Uses of nonparametric statistics in survey work

Outline

- Definition of nonparametric statistics
- History of nonparametric statistics
- Preliminaries: Note on Survey Data, Order Statistics, and Ranks
- Wilcoxon rank sum test

Outline (cont.)

- Various nonparametric techniques used in survey work
- Summary
- References

Hypothesis Testing

- Choose α
- Formulate hypotheses

 $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$

• Calculate test statistic *under H*₀:

$$t_{m+n-2} = \frac{\overline{y} - \overline{x}}{\sqrt{S_p \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

Hypothesis Testing (cont.)

• Errors

	H ₀ is true	H ₀ is false	
Reject H _o	Type 1 error (α)	Correct decision	
Fail to reject H ₀	Correct decision	Type 2 error (β)	

• <u>If model is misspecified, error rates and inferences</u> can be wrong

Definition of nonparametric statistics

- "Distribution free" random variable has a sampling distribution that does not depend on the distribution function of the population
- "Nonparametric test" hypothesis test which does not concern a parameter
 - e.g. tests of randomness, goodness of fit tests, tests for independence

Definition of nonparametric statistics (cont.)

• "Flexible models" – relaxed model structure

Parametric	Nonparametric
$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_{i,i}$	1. $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_{i,i}$
ε _i ~i.i.d. N(0,σ)	i.i.d. with median(ϵ_i) = 0
	2. $Y_i = \mu(X_i) + \varepsilon_i$

History of nonparametric statistics

- Karl Pearson's \times^2 for goodness of fit (1900)
- Rank correlation coefficients
 - Spearman's r (1904)
 - Kendall's t (1938)
- Beginning of modern subject in mid 1930's, says Savage (1953, 1962)

History of nonparametric statistics (cont.)

- "nonparametric" term first used by Wolfowitz (1942)
- Two-sample rank sum test by Wilcoxon (1945)
- Mann and Whitney extended Wilcoxon's test for unequal sample sizes (1947)

History of nonparametric statistics (cont.)

- Pitman efficiency (1948)
- Jackknife by Quenouille (1949) for bias reduction and Tukey (1958, 1962) for variance estimation
- Hodges and Lehmann derived estimators from rank tests (1963)

History of nonparametric statistics (cont.)

- Bootstrap by Efron (1979)
- Locally weighted regression by Cleveland (1979) and Cleveland and Devlin (1988)

• And much more !

Note on Survey Data

- Note, "i.i.d." is generally not valid for sample survey data
- Adjustments exist that take survey design into account for x² tests and other procedures:
 - PROC SURVEYFREQ
 - PROC SURVEYREG
 - PROC SURVEYLOGISTIC

Note on Survey Data (cont.)

- The main point is that tests need to be modified for use with survey data
- A simple option is to generate w_i observations per unit, where w_i is the final weight

Order Statistics

- Let X₁, X₂, ..., X_n be your data
- Ordering these data from smallest to largest gives: X₍₁₎, X₍₂₎, ..., X_(n)
- $X_{(1)}$ is the minimum
- X_(n) is the maximum
- If n is odd, $X_{((n+1)/2)}$ is the median
- If n is even, $(X_{(n/2)} + X_{((n/2)+1)})/2$ is the median

Ranks

The rank of the ith observation X_i, in a sample of n observations, is equal to the number of observations that are less than or equal to X_i

$$\operatorname{rank}(\mathbf{X}_{i}) = \sum_{j=1}^{n} I(\mathbf{X}_{j} \leq \mathbf{X}_{i})$$

PROC RANK data=mydata ties=mean

- $X = \{5,6,7\}, rank(X) = \{1,2,3\}$
- In practice, ties in ranks occur
- X = {5, 6, 6, 7}
- Midrank method: $rank(X) = \{1, 2.5, 2.5, 4\}$
- Need to adjust variance because of ties

- Often use T(rank(X)) instead of T(X)
- We might be concerned about loss of efficiency – the "throwing away data" issue
- What is Corr(X, rank(X)) ?

• Stuart (1954, 1955) showed

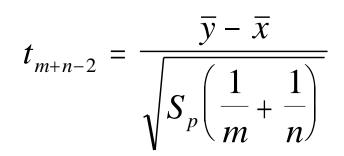
$$\lim_{N\to\infty} \rho[X, rank(X)] = \frac{2\sqrt{3}}{\sigma_X} \left\{ E[XF_X(X)] - \frac{1}{2}E(X) \right\}$$

 I simulated various symmetrical and skewed F

Туре	Distribution	Corr(X, rank(X))	
Symmetric	Binomial(n=100, p=.5)	.978	
Symmetric	Normal(μ=0, σ=1)	.977	
Symmetric	T(df=10)	.961	
Symmetric	Uniform(a=0, b=1)	.999	
Skewed Right	Beta(α=2, β=5)	.975	
Skewed Right	Binomial(n=100, p=.1)	.977	
Skewed Right	Chi-square(df=2)	.865	
Skewed Right	Exponential(λ =1)	.867	
Skewed Right	F(df _{num} =10, df _{den} =10)	.811	
Skewed Right	Gamma(θ=2)	.918	
Skewed Right	Lognormal(0, 1)	.689	
Skewed Right	Poisson(λ=4)	.973	

Wilcoxon rank sum test

- Is there a difference between the means of two groups?
- Typically, we'd use a 2-sample t-test:

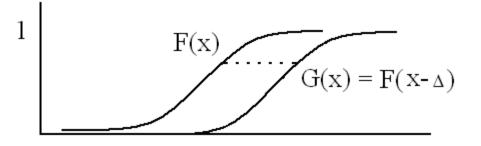


X Sales (\$)	Y Sales (\$)
9,000	8,500
9,500	6,000
9,200	4,900
	6,900

- Assumptions
 - $X_1, X_2, ..., X_m$ random i.i.d. sample from G
 - Y₁, Y₂, ..., Y_n random i.i.d. sample from F
 - F and G are continuous
 - F and G differ only in location, i.e. $G(X) = F(X \Delta)$

•
$$H_0: \Delta = 0$$
 vs. $H_1: \Delta > 0$

Distributions differ only in location



 the data from one distribution is systematically larger than the data from the other

- <u>Combine</u> N = m + n X-values and Y-values and calculate their ranks.
- W is the sum of ranks assigned to the X-values

$$W = \sum_{j=1}^{m} rank(X_j)$$

Calculating the ranks

X Sales (\$)	rank(X)	Y Sales (\$)	rank(Y)
9,000	5	8,500	4
9,500	7	6,000	2
9,200	6	4,900	1
		6,900	3

$$W = \sum_{j=1}^{m} rank(X_{j}) = 5 + 7 + 6 = 18$$

100

• Under H₀,

$$E(W) = \frac{m(m+n+1)}{2} \qquad V(W) = \frac{mn(m+n+1)}{12}$$

- Exact null probability distribution of W can be obtained by systematic enumeration
- m = 3 and n = 4

- configurations for the rank of the X's = $\frac{7!}{3!(7-3)!} = 35$

- W will range between 6 and 18, symmetric about E(W) = 12

W	Possible rank of X's	Frequency
18	5,6,7	1
17	4,6,7	1
16	3,6,7 ; 4,5,7	2
15	2,6,7 ; 3,5,7 ; 4,5,6	3
14	1,6,7 ; 2,5,7 ; 3,4,7 ; 3,5,6	4
13	1,5,7 ; 2,4,7 ; 2,5,6 ; 3,4,6	4
12	1,4,7 ; 2,3,7 ; 1,5,6 ; 2,4,6 ; 3,4,5	5

• $P(W \ge 18) = 1/35 = .0286$

- P-value_{exact} = .0286, so reject H₀, and conclude that the distribution of X is shifted to the right of Y at the 10% level
- PROC NPAR1WAY data=mydata WILCOXON hl; Var variable; Exact;

• Estimate of Δ (Hodges and Lehmann)

$$\hat{\Delta} = median(X_j - Y_i) = \$2,800$$

- 90% confidence interval for Δ
 - U is ordered list of the mn X Y differences

•
$$CI = (U_{(C_{\alpha})}, U_{(mn+1-C_{\alpha})}) = (\$500, \$4, 600)$$

• Where $C_{\alpha} \approx \frac{mn}{2} - z_{\frac{\alpha}{2}} (\frac{mn(m+n+1)}{12})^{\frac{1}{2}}$ for large m and n

- How does this Wilcoxon rank sum test compare relative to a two-sample t-test?
- And how do we carry out such a comparison?

Asymptotic Relative Efficiency

- Pitman (1948)
 - asymptotic relative efficiency ("A.R.E")
 - limit of the ratio of sample sizes required for the two tests to achieve the same power under the same level of significance as the sample sizes tend to infinity

$$E_{W,t}(F) = 12\sigma_F^2 \left(\int f^2\right)^2$$

Asymptotic Relative Efficiency (cont.)

F	Normal	Uniform	Logistic	Double Exponential	Exponential
E(W, t)	.955	1	1.097	1.5	3

For <u>all</u> populations (i.e. for any F), E_{W,t}(F) ≥ .864
Hodges and Lehmann, 1956

Nonparametric Methods Used in Survey Work

- A sampling of methods from
 - Correlation
 - Outlier detection
 - Variance estimation
 - Simulation
 - Goodness of fit
 - Regression

Correlation

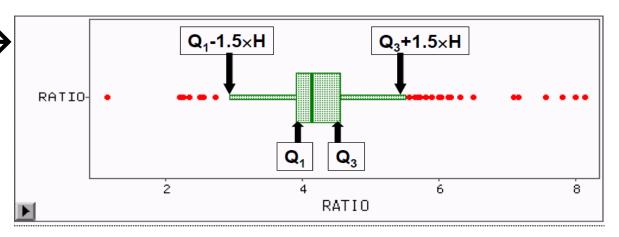
- Spearman correlation coefficient
 - Spearman(X,Y) = Pearson(rank(X), rank(Y))
 - let s = rank(X), and t = rank(Y), then

$$r = \frac{\sum_{i} (s_{i} - \bar{s})(t_{i} - \bar{t})}{\sqrt{\sum_{i} (s_{i} - \bar{s})^{2} \sum_{i} (t_{i} - \bar{t})^{2}}} = 1 - \frac{6\sum_{i} (s_{i} - t_{i})^{2}}{n(n^{2} - 1)}$$

– PROC CORR data=mydata SPEARMAN;

Resistant Fences

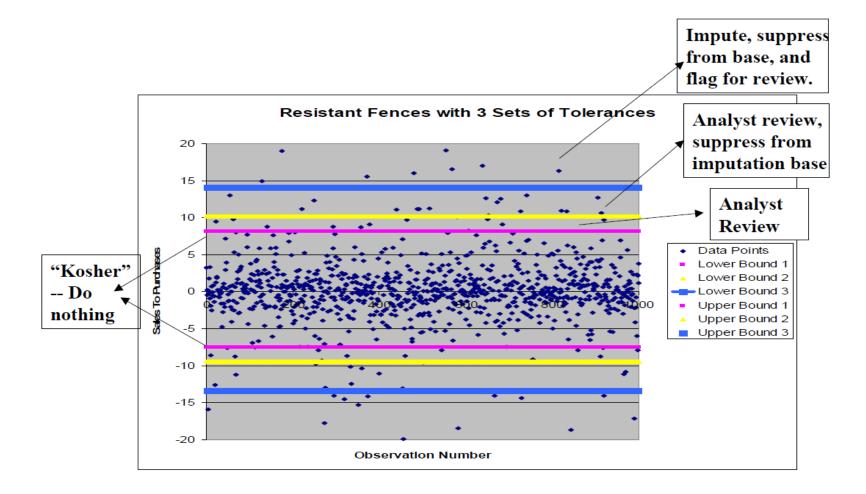
- symmetric \rightarrow
- asymmetric
- flexible
- item or ratio



 Q_1 = the 1st quartile of a distribution of cell ratios Q_3 = the 3rd quartile of a distribution of cell ratios $H = (Q_3-Q_1) =$ the interquartile range

 take actions depending on region the point lies in

Resistant Fences (cont.)



Hidiroglou-Berthelot ("HB") Edit

- Generates tolerances that identify ratios as outlying or not
- Two positively correlated items
 Q2 Sales / Q1 Sales
- Three-step process
 - Centering transformation
 - Magnitude transformation
 - Quartile test

HB Edit (cont.)

Centering transformation

$$R_{i} = \frac{x_{i}}{y_{i}} \qquad S_{i} = \begin{cases} 1 - \frac{R_{m}}{R_{i}}, & 0 < R_{i} < R_{m} \\ \frac{R_{i}}{R_{m}} - 1, & R_{i} \ge R_{m} \end{cases}$$

 $- R_m = median of R_i$

HB Edit (cont.)

Magnitude transformation

$$E_i = S_i \cdot \{\max(x_i, y_i)\}^u$$

- u is size parameter (0 q u q 1)
 - u = 1 gives full importance to unit's size
 - u = 0 gives no importance to unit's size
 - default is u = .5

HB Edit (cont.)

• Quartile Test

- Calculate

$$D_{Q1} = \max(E_m - E_{Q1}, |A \cdot E_m|) \quad D_{Q3} = \max(E_{Q3} - E_m, |A \cdot E_m|)$$

– A is a multiplier, say .05

• Flag E_i as outlier if

– less than E_m -cD_{Q1}, or greater than E_m +cD_{Q3}

Variance Estimation

- Replication methods
 - divide parent sample into subsamples (R replicates)
 - calculate replicate weights (to represent full sample)
 - repeat estimation process on each subsample

- estimate variance as
$$\hat{V}(\hat{Y}) = c \sum_{r=1}^{R} (\hat{Y}_r - \hat{Y})^2$$

Ongoing work to implement stratified jackknife

Variance Estimation (cont.)

Bootstrap

- <u>randomly</u> resample B samples with replacement from the original sample
- bootstrap samples : original sample :: original sample : population
- each resample is same size as original sample
- compute point estimate, confidence intervals, etc.

$$\hat{\theta}^* = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_b^* \qquad \qquad \hat{v}_{boot} \left(\hat{\theta} \right) = \frac{\sum_{b=1}^{B} \left(\hat{\theta}_b^* - \hat{\theta}^* \right)^2}{B - 1}$$

Simulation

- evaluating statistical properties of parameter or variance estimators over repeated samples
- generalized population simulation programs
- nearest neighbors technique to simulate a multivariate population with an unknown distribution

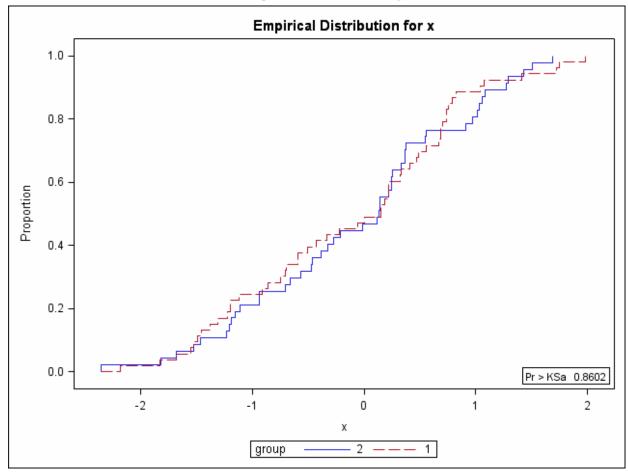
Kolmogorov-Smirnov Goodness of Fit Test

 largest vertical distance between empirical CDFs:

$$D_{n,m} = \max |F_n(x) - G_m(x)| \qquad \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X \le X_i)$$

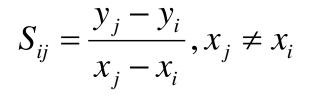
 PROC NPAR1WAY data=mydata edf plots=edfplot

Kolmogorov-Smirnov Test (cont.)



Theil estimator

• Calculate all possible slopes



• Then calculate

- Slope:
$$\widetilde{\beta}_1 = median(S_{ij})$$

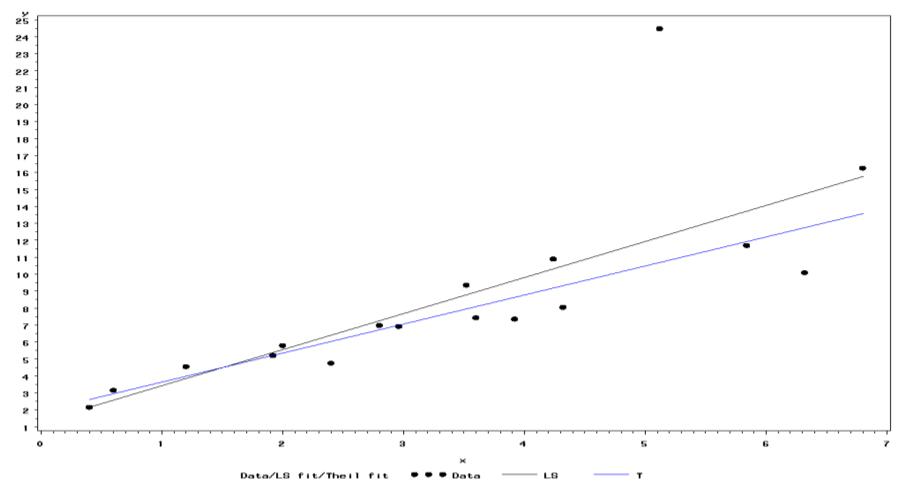
- Intercept:

i)
$$\widetilde{\beta}_0 = \widetilde{y} - \widetilde{\beta}_1 \widetilde{x}$$

ii) $\widetilde{\beta}_0 = median(y_i - \widetilde{\beta}_1 x_i)$

Theil estimator (cont.)

Plot of data, Least squares fit (LS), Theil fit (T)



Local regression

- Cleveland (1979)
 - Locally weighted least squares fit
 - Specify degree, smoothing parameter, and weighting function
 - PROC LOESS
- Process
 - k = floor(smoothing parameter * n)
 - 5 = .05 * 100
 - For each x_0 find the k closest points

Local regression (cont.)

– Calculate the max width of the neighborhood:

 $\Delta(x_0) = \max |x_0 - x_i|$

Assign a weight to each of the k points in the neighborhood:

$$w_i(x_0) = W\left(\frac{|x_0 - x_i|}{\Delta(x_0)}\right)$$

- Note, $W(u) = (1 - u^3)^3, 0 \le is$ the Tri-cube function

Local regression (cont.)

-W(x) > 0 for |x| < 1

(negative weights don't make sense)

$$-$$
 W(-x) = W(x)

(no reason to treat points on the left of x_i differently than those on the right)

- W(x) is non-increasing function for $x \ge 0$

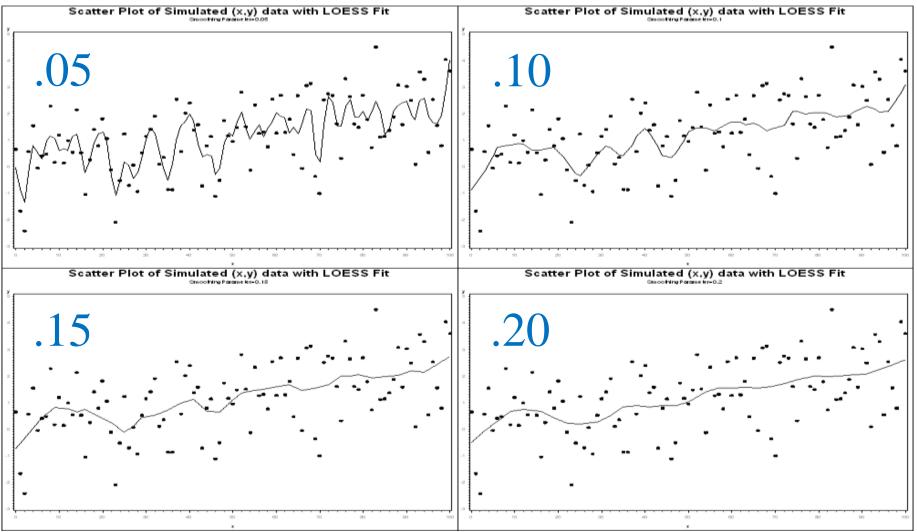
(unreasonable to allow a close point to have less weight than one that is further from x_i)

$$-W(x)=0 \text{ for } |x| \ge 1$$

(for computational reasons)

• Minimize
$$\sum_{i=1}^{k} W_i(x_0) \left(y_i - \sum_{j=0}^{p} \beta_j x^j \right)^2 |\mathbf{x}_0|$$

Local regression (cont.)



Summary

- Nonparametric statistics often requires few assumptions about the underlying population from which the data are obtained
- Can often obtain exact p-values
 - However, this may take a long time with large sample sizes
- Need to adjust procedures for survey data

Summary (cont.)

- Procedures that use ranks and medians are relatively insensitive to outlying observations
- The jackknife and bootstrap can be used in complicated situations where the distribution theory needed to support parametric methods is intractable

Summary (cont.)

- Some tests are slightly less efficient than their parametric counterparts even on the parametric "home turf", but can be much more efficient
- Can lose power if underlying distribution is actually normal (for example)

Summary (cont.)

- Nonparametric methods have produced good results in survey processing
- I expect continued use of nonparametric methods in exploratory data analysis, hypothesis testing, imputation, and variance estimation in survey work

References

- Stuart, A. (1954). The correlation between variate-values and ranks in samples from a continuous distribution. *British Journal of Statistical Psychology, 7, 37-44.*
- Rao, J. N. K., Scott, A. J., (1987). On Simple Adjustments to Chi-Square Tests with Sample Survey Data. *The Annals of Statistics*, Vol. 15, No. 1, 385-397.
- <u>The Jackknife and Bootstrap</u>, Shao, Tu, 1995
- <u>Practical Nonparametric Statistics</u>, Conover, 1999
- <u>Nonparametric Statistical Methods</u>, Hollander, Wolfe, 1999
- <u>Sampling: Design and Analysis</u>, Lohr, 1999
- <u>Nonparametric Simple Regression</u>, Fox, 2000
- Nonparametrics: Statistical Methods Based on Ranks, Lehmann, 2006
- Nonparametric Statistical Inference, Gibbons, Chakraborti, 2011

Contact Information

Statisticool.com

justin@statisticool.com