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Motivation for This Talk 

• We already use nonparametric methods in 

sampling, exploratory data analysis, outlier 

detection, imputation, variance estimation, 

simulation, goodness of fit tests, … 

 

• However, nonparametric statistics itself is rarely 

discussed 
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What to Get Out of This Talk 

• An overview of nonparametric statistics 

 

• Learn advantages and disadvantages 

 

• Learn a variety of SAS procedures 

 

• Uses of nonparametric statistics in survey work 
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Outline 

• Definition of nonparametric statistics 

 

• History of nonparametric statistics 

 

• Preliminaries: Note on Survey Data, Order 
Statistics, and Ranks 

 

• Wilcoxon rank sum test 
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Outline (cont.) 

 

• Various nonparametric techniques used in 
survey work 

 

• Summary 

 

• References 
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Hypothesis Testing 
• Choose  

• Formulate hypotheses 

 

                         H0: 1 = 2                                                        Ha: 1 ≠ 2 

 

 

 

 

 
 

 

 

• Calculate test statistic under H0: 
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Hypothesis Testing (cont.) 
• Errors 

 

 

 

  

 

 

• If model is misspecified, error rates and inferences 

can be wrong 
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H0 is true H0 is false 

Reject H0 Type 1 error () Correct decision 

Fail to reject H0 Correct decision Type 2 error () 



Definition of nonparametric statistics 

 

• “Distribution free” – random variable has a 

sampling distribution that does not depend on 

the distribution function of the population 

 

• “Nonparametric test” – hypothesis test which 

does not concern a parameter 

– e.g. tests of randomness, goodness of fit tests, tests 

for independence 
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Definition of nonparametric statistics 
(cont.) 

• “Flexible models” – relaxed model structure 
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Parametric Nonparametric 

Yi = β0 + β1Xi + i,  

 

i ~ i.i.d. N(0,σ) 
 

1. Yi = β0 + β1Xi + i,  
 

i.i.d. with median(i) = 0 
 

2. Yi = (Xi) + i 
 

 



History of nonparametric statistics 

• Karl Pearson’s x2 for goodness of fit (1900) 

 

• Rank correlation coefficients 

– Spearman’s r (1904) 

– Kendall’s t (1938) 

 

• Beginning of modern subject in mid 1930’s, says 

Savage (1953, 1962) 
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History of nonparametric statistics 
(cont.) 

• “nonparametric” term first used by Wolfowitz 

(1942) 

 

• Two-sample rank sum test by Wilcoxon (1945) 

 

• Mann and Whitney extended Wilcoxon’s test for 

unequal sample sizes (1947)  
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History of nonparametric statistics 
(cont.) 

• Pitman efficiency (1948) 

 

• Jackknife by Quenouille (1949) for bias 

reduction and Tukey (1958, 1962) for variance 

estimation 

 

• Hodges and Lehmann derived estimators from 

rank tests (1963)  
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History of nonparametric statistics 
(cont.) 

 

• Bootstrap by Efron (1979) 

 

• Locally weighted regression by Cleveland (1979) 

and Cleveland and Devlin (1988) 

 

 

• And much more ! 
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Note on Survey Data 

• Note, “i.i.d.” is generally not valid for sample 

survey data 

 

• Adjustments exist that take survey design into 

account for x2 tests and other procedures: 

 

• PROC SURVEYFREQ 

• PROC SURVEYREG 

• PROC SURVEYLOGISTIC 
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Note on Survey Data (cont.) 

 

• The main point is that tests need to be modified 

for use with survey data 

 

• A simple option is to generate wi observations 

per unit, where wi is the final weight 
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Order Statistics 
 

• Let X1, X2, …, Xn be your data 

 

• Ordering these data from smallest to largest 
gives: X(1), X(2), …, X(n) 

 

• X(1) is the minimum 

• X(n) is the maximum 

• If n is odd, X((n+1)/2) is the median 

• If n is even, (X(n/2) + X((n/2)+1))/2 is the median 
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Ranks 
 

• The rank of the ith observation Xi, in a sample 
of n observations, is equal to the number of 
observations that are less than or equal to Xi 

 

 

 

 

• PROC RANK data=mydata ties=mean 
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Ranks (cont.) 
 

• X = {5,6,7}, rank(X) = {1,2,3} 

 

• In practice, ties in ranks occur 

 

• X = {5, 6, 6, 7} 

• Midrank method: rank(X) = {1, 2.5, 2.5, 4} 

 

• Need to adjust variance because of ties 
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Ranks (cont.) 

• Often use T(rank(X)) instead of T(X) 

 

• We might be concerned about loss of efficiency 

– the “throwing away data” issue 

 

• What is Corr(X, rank(X)) ? 
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Ranks (cont.) 

• Stuart (1954, 1955) showed 

 

 

 

• I simulated various symmetrical and 

skewed F 
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Ranks (cont.) 
Type Distribution Corr(X, rank(X))  

Symmetric Binomial(n=100, p=.5) .978 

Symmetric Normal(=0, σ=1) .977 

Symmetric T(df=10) .961 

Symmetric Uniform(a=0, b=1) .999 

Skewed Right Beta(=2, =5) .975 

Skewed Right Binomial(n=100, p=.1) .977 

Skewed Right Chi-square(df=2) .865 

Skewed Right Exponential(=1) .867 

Skewed Right F(dfnum=10, dfden=10) .811 

Skewed Right Gamma(=2) .918 

Skewed Right Lognormal(0, 1) .689 

Skewed Right Poisson(=4) .973 
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Wilcoxon rank sum test 

• Is there a difference between the means of two 

groups? 

 

• Typically, we’d use  

    a 2-sample t-test: 
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X Sales ($) Y Sales ($) 

9,000 8,500 

9,500 6,000 

9,200 4,900 
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Wilcoxon rank sum test (cont.) 

• Assumptions 

• X1, X2, …, Xm random i.i.d. sample from G 

• Y1, Y2, …, Yn random i.i.d. sample from F 

• F and G are continuous 

• F and G differ only in location, i.e. G(X) = F(X - ) 

 

• H0:  = 0 vs. H1:  > 0 
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Wilcoxon rank sum test (cont.) 

• Distributions differ only in location 

 

 

 

 

• the data from one distribution is 

systematically larger than the data from 

the other 
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Wilcoxon rank sum test (cont.) 

• Combine N = m + n X-values and Y-values and 

calculate their ranks. 

 

• W is the sum of ranks assigned to the X-values 
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Wilcoxon rank sum test (cont.) 

• Calculating the ranks 
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X Sales ($) rank(X) Y Sales ($) rank(Y) 

9,000 5 8,500 4 

9,500 7 6,000 2 

9,200 6 4,900 1 

6,900 3 



Wilcoxon rank sum test (cont.) 

 

 

 

• Under H0, 
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Wilcoxon rank sum test (cont.) 

• Exact null probability distribution of W can be 

obtained by systematic enumeration 

 

• m = 3 and n = 4 

– configurations for the rank of the X’s =  

 

– W will range between 6 and 18, symmetric about 

E(W) = 12 
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Wilcoxon rank sum test (cont.) 

 

 

 

 

 

 

 

• P(W ≥ 18) = 1/35 = .0286 
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W Possible rank of X’s Frequency 

18 5,6,7 1 

17 4,6,7 1 

16 3,6,7  ;  4,5,7 2 

15 2,6,7  ;  3,5,7  ;  4,5,6 3 

14 1,6,7  ;  2,5,7  ;  3,4,7  ;  3,5,6 4 

13 1,5,7  ;  2,4,7  ;  2,5,6  ;  3,4,6 4 

12 1,4,7  ;  2,3,7  ;  1,5,6  ;  2,4,6  ;  3,4,5 5 



Wilcoxon rank sum test (cont.) 

• P-valueexact = .0286, so reject H0, and conclude 

that the distribution of X is shifted to the right of Y 

at the 10% level 

 

• PROC NPAR1WAY data=mydata WILCOXON hl; 

    Var variable; 

    Exact; 
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Wilcoxon rank sum test (cont.) 

• Estimate of  (Hodges and Lehmann) 

 

 

• 90% confidence interval for  
• U is ordered list of the mn X – Y differences 

 

•   

 

• Where                                                       for large m and n  
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Wilcoxon rank sum test (cont.) 

 

• How does this Wilcoxon rank sum test compare 

relative to a two-sample t-test? 

 

• And how do we carry out such a comparison? 
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Asymptotic Relative Efficiency 

• Pitman (1948) 

– asymptotic relative efficiency (“A.R.E”) 

• limit of the ratio of sample sizes required for the two tests to 

achieve the same power under the same level of significance 

as the sample sizes tend to infinity 
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Asymptotic Relative Efficiency 

(cont.) 
 

 

 

 

 

• For all populations (i.e. for any F), EW,t(F) ≥ .864  

– Hodges and Lehmann, 1956 
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F Normal Uniform Logistic Double 
Exponential 

Exponential 

E(W, t) .955 1 1.097 1.5 3 



Nonparametric Methods Used in 

Survey Work 
 

• A sampling of methods from 

– Correlation 

– Outlier detection 

– Variance estimation 

– Simulation 

– Goodness of fit 

– Regression 
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Correlation 

• Spearman correlation coefficient 

– Spearman(X,Y) = Pearson(rank(X), rank(Y)) 

– let s = rank(X), and t = rank(Y), then 

 

 

 

 

 

– PROC CORR data=mydata SPEARMAN; 
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Resistant Fences 

• symmetric   

• asymmetric 

• flexible 

• item or ratio 

 

• take actions depending on region the point 

lies in 

 

 

 
37 



Resistant Fences (cont.) 
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Hidiroglou-Berthelot (“HB”) Edit 

• Generates tolerances that identify ratios as 

outlying or not 

 

• Two positively correlated items 

– Q2 Sales / Q1 Sales 

 

• Three-step process 

– Centering transformation 

– Magnitude transformation 

– Quartile test 
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HB Edit (cont.) 

• Centering transformation 

 

 

 

 

 

 

– Rm = median of Ri 
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HB Edit (cont.) 

• Magnitude transformation 

 

 

 

• u is size parameter (0 q u q 1) 

– u = 1 gives full importance to unit’s size 

– u = 0 gives no importance to unit’s size 

– default is u = .5 
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HB Edit (cont.) 

• Quartile Test 

 

– Calculate 

 

 

 

– A is a multiplier, say .05 

 

• Flag Ei as outlier if 

– less than Em-cDQ1, or greater than Em+cDQ3 
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Variance Estimation 
 

• Replication methods 

– divide parent sample into subsamples (R replicates) 

– calculate replicate weights (to represent full sample) 

– repeat estimation process on each subsample 

 

– estimate variance as  

 

 

• Ongoing work to implement stratified jackknife 
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Variance Estimation (cont.) 

 

• Bootstrap 

– randomly resample B samples with replacement from 

the original sample 
– bootstrap samples : original sample :: original sample : population 

– each resample is same size as original sample 

– compute point estimate, confidence intervals, etc. 
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Simulation 

• evaluating statistical properties of parameter or variance 

estimators over repeated samples 

 

• generalized population simulation programs 

 

• nearest neighbors technique to simulate a multivariate 

population with an unknown distribution 
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Kolmogorov-Smirnov Goodness 

of Fit Test 
 

• largest vertical distance between empirical 

CDFs: 

 

 

 

• PROC NPAR1WAY data=mydata edf 

plots=edfplot 
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Kolmogorov-Smirnov Test 

(cont.) 

47 



Theil estimator 

 
• Calculate all possible slopes 

 
• Then calculate 

 
– Slope:  

 
– Intercept: 

 
i) 

 
ii) 

48 

 ~
1  median Sij

~ ~ ~ ~ 0 1 y x

 ii xymedian 10

~~
 

ij

ij

ij

ij xx
xx

yy
S 




 ,



Theil estimator (cont.) 
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Local regression 
• Cleveland (1979) 

– Locally weighted least squares fit 

– Specify degree, smoothing parameter, and 

weighting function 

– PROC LOESS 

 

• Process 

– k = floor(smoothing parameter * n) 

• 5 = .05 * 100 

– For each x0 find the k closest points 
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Local regression (cont.) 

– Calculate the max width of the neighborhood: 

 

 

– Assign a weight to each of the k points in the 
neighborhood: 

 

 

 

– Note,                                      is the Tri-cube function 
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Local regression (cont.) 

– W(x) > 0 for |x| < 1  
(negative weights don’t make sense) 

– W(-x) = W(x)  
(no reason to treat points on the left of xi  differently than those on the right) 

– W(x) is non-increasing function for x ≥ 0  
(unreasonable to allow a close point to have less weight than one that is further from xi) 

– W(x) = 0 for |x| ≥ 1  
(for computational reasons) 

 
 

• Minimize                                    for all x0 
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Local regression (cont.) 

53 

 

.05 .10 

.15 .20 



Summary 

• Nonparametric statistics often requires few 

assumptions about the underlying population 

from which the data are obtained 

 

• Can often obtain exact p-values 
– However, this may take a long time with large sample sizes 

 

• Need to adjust procedures for survey data 
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Summary (cont.) 

• Procedures that use ranks and medians are 

relatively insensitive to outlying observations 

 

• The jackknife and bootstrap can be used in 

complicated situations where the distribution 

theory needed to support parametric methods 

is intractable 
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Summary (cont.) 

• Some tests are slightly less efficient than their 

parametric counterparts even on the parametric 

“home turf”, but can be much more efficient 

 

• Can lose power if underlying distribution is 

actually normal (for example) 
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Summary (cont.) 

• Nonparametric methods have produced good 

results in survey processing 

 

• I expect continued use of nonparametric 

methods in exploratory data analysis, hypothesis 

testing, imputation, and variance estimation in 

survey work 
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